Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium complexes Sharpless mechanism

The types of reactions that can be catalyzed by transition metal complexes are now very numerous and are very widely used in synthesis. We have already met a number of them—osmium in catalysis of dihydroxylation reactions, titanium in Sharpless epoxidation, various metals in hydrogenation reactions of alkenes, and the Ziegler-Natta process for polymerization. In this section, we will just highlight a few types that have been popular—an oxidation, some hydrogenations, and some coupling reactions. Although outline reaction mechanisms will be given, this is for interest only—they are beyond the scope of this text, and many are more complicated than is shown here. [Pg.1119]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

Imido and 0x0 compounds are intermediates in many of the transfers of oxygen atoms and nitrene units to olefins to form epoxides and aziridines, and they are intermediates in many of the insertions of oxygen atoms and nitrene units into the C-H bonds of hydrocarbons to form alcohols and amine derivatives. The enantioselective epoxidation of allylic alcohols (Scheme 13.22) " is the most widely used epoxida-tion process, and the discovery and development of this process was one of the sets of chemistry that led K. Barry Sharpless to receive the Nobel Prize in Chemistry in 2001. The mechanism of this process is not well established, despite the long time since its discovery and development. Nevertheless, most people accept that transfer of the oxygen atom occurs from a titanium-peroxo complex - rather than from an 0x0 complex. Jacobsen s and Katsuki s - manganese-salen catalysts for the enantioselective epoxidations of unfunctionalized olefins, which were based on Kochi s achiral chromium- and manganese-salen complexes, are a second set of... [Pg.518]


See other pages where Titanium complexes Sharpless mechanism is mentioned: [Pg.116]    [Pg.417]    [Pg.417]    [Pg.828]    [Pg.202]    [Pg.202]    [Pg.197]    [Pg.676]    [Pg.254]   
See also in sourсe #XX -- [ Pg.143 ]

See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Mechanism complexes

Sharpless

Titanium complexe

Titanium complexes

© 2024 chempedia.info