Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics state

The free energy differences obtained from our constrained simulations refer to strictly specified states, defined by single points in the 14-dimensional dihedral space. Standard concepts of a molecular conformation include some region, or volume in that space, explored by thermal fluctuations around a transient equilibrium structure. To obtain the free energy differences between conformers of the unconstrained peptide, a correction for the thermodynamic state is needed. The volume of explored conformational space may be estimated from the covariance matrix of the coordinates of interest, = ((Ci [13, lOj. For each of the four selected conform-... [Pg.172]

We now know the energy of the propene thermodynamic state (propene(g)) relative to the state 3 C(g) and 6 11(g) and the energy of the therrnodynarnie standard state of the elements relative to the same state 3 C(g) and 6 11(g)). which is opposite in sign to the summed energies of formation of 3 C(g) and (i IKg). The energy differenee between these thennodynamie states is... [Pg.320]

Reaction (5. EE) is particularly useful for the discussion of thermodynamic considerations because of the way differences in thermodynamic state variables are independent of path. Accordingly, if we know the value of AG for reaction (5. EE), we have characterized the following ... [Pg.327]

In the broadest sense, thermodynamics is concerned with mathematical relationships that describe equiUbrium conditions as well as transformations of energy from one form to another. Many chemical properties and parameters of engineering significance have origins in the mathematical expressions of the first and second laws and accompanying definitions. Particularly important are those fundamental equations which connect thermodynamic state functions to real-world, measurable properties such as pressure, volume, temperature, and heat capacity (1 3) (see also Thermodynamic properties). [Pg.232]

The first law of thermodynamics states that energy is conserved that, although it can be altered in form and transferred from one place to another, the total quantity remains constant. Thus, the first law of thermodynamics depends on the concept of energy but, conversely, energy is an essential thermodynamic function because it allows the first law to be formulated. This couphng is characteristic of the primitive concepts of thermodynamics. [Pg.513]

Internal reflux can he controlled without affecting product yield. The maximum internal liquid reflux is fixed by the thermodynamic state of the feed relative to the product stream. Excessive reflux will diminish product yield. [Pg.1993]

The first law of thermodynamics states that energy cannot be created or destroyed, although it may be changed from one form to another. Stated in equation form, it is written as follows ... [Pg.27]

The thermal state of the melt in the extruder is frequently compared with two ideal thermodynamic states. One is where the process may be regarded as... [Pg.251]

The principal effect of the presence of a smooth wall, compared to a free surface, is the occurrence of a maximum in the density near the interface due to packing effects. The height of the first maximum in the density profile and the existence of additional maxima depend on the strength of the surface-water interactions. The thermodynamic state of the liquid in a slit pore, which has usually not been controlled in the simulations, also plays a role. If the two surfaces are too close to each other, the liquid responds by producing pronounced density oscillations. [Pg.356]

The thermodynamic state of a reactive mixture just prior to combustion is determined by adiabatic compression and by turbulent mixing with combustion... [Pg.88]

The third law of thermodynamics states that the entropy of any crystalline, perfectly ordered substance must approach zero as the temperature approaches 0 K, and at T = 0 K entropy is exactly zero. Based on this, it is possible to establish a quantitative, absolute entropy scale for any substance as... [Pg.61]

I mentioned temperature at the end of the last chapter. The concept of temperature has a great deal to do with thermodynamics, and at first sight very little to do with microscopic systems such as atoms or molecules. The Zeroth Law of Thermodynamics states that Tf system A is in thermal equilibrium with system B, and system B is in thermal equilibrium with system C, then system A is also in thermal equilibrium with system C . This statement indicates the existence of a property that is common to systems in thermal equilibrium, irrespective of their nature or composition. The property is referred to as the temperature of the system. [Pg.58]

Thus, in adiabatic processes the entropy of a system must always increase or remain constant. In words, the second law of thermodynamics states that the entropy of a system that undergoes an adiabatic process can never decrease. Notice that for the system plus the surroundings, that is, the universe, all processes are adiabatic since there are no surroundings, hence in the universe the entropy can never decrease. Thus, the first law deals with the conservation of energy in any type of process, while the sec-... [Pg.1128]

The adiabatic efficiency is a function of the pressure ratio, and thus, dependent on the thermodynamic state of the gas undergoing compression. ... [Pg.486]

The second law of thermodynamics states that energy exists at various levels and is available for use only if it can move from a higher to a lower level. For example, it is impossible for any device to operate in a cycle and produce work while exchanging heat only with bodies at a single fixed temperature. In thermodynamics, a measure of the unavailability of energy has been devised and is known as entropy. As a measure of unavailability, entropy increases as a system loses heat, but remains constant when there is no gain or loss of heat as in an adiabatic process. It is defined by the following differential equation ... [Pg.557]

Consider a physical system with a set of states a, each of which has an energy Hio). If the system is at some finite temperature T, random thermal fluctuations will cause a and therefore H a) to vary. While a system might initially be driven towards one direction (decreasing H, for example) during some transient period immediately following its preparation, as time increases, it eventually fluctuates around a constant average value. When a system has reached this state, it is said to be in thermal equilibrium. A fundamental principle from thermodynamics states that when a system is in thermal equilibrium, each of its states a occurs with a probability equal to the Boltzman distribution P(a) ... [Pg.326]

In connection with the thermodynamic state of water in SAH, it is appropriate to consider one more question, i.e., their ability to accumulate water vapor contained in the atmosphere and in the space of soil pores. It is clear that this possibility is determined by the chemical potential balance of water in the gel and in the gaseous phase. In particular, in the case of saturated water vapor, the equilibrium swelling degree of SAH in contact with vapor should be the same as that of the gel immersed in water. However, even at a relative humidity of 99%, which corresponds to pF 4.13, SAH practically do not swell (w 3-3.5 g g1). In any case, the absorbed water will be unavailable for plants. Therefore, the only real possibility for SAH to absorb water is its preliminary condensation which can be attained through the presence of temperature gradients. [Pg.126]

There is thus assumed to be a one-to-one correspondence between the most probable distribution and the thermodynamic state. The equilibrium ensemble corresponding to any given thermodynamic state is then used to compute averages over the ensemble of other (not necessarily thermodynamic) properties of the systems represented in the ensemble. The first step in developing this theory is thus a suitable definition of the probability of a distribution in a collection of systems. In classical statistics we are familiar with the fact that the logarithm of the probability of a distribution w[n is — J(n) w n) In w n, and that the classical expression for entropy in the ensemble is20... [Pg.466]

Using the expression (8-218) for the most probable (equilibrium) grand ensemble for the thermodynamic state, we find the density... [Pg.473]

Like the engine-based statements, Caratheodory s statement invokes limitations. From a given thermodynamic state of the system, there are states that cannot be reached from the initial state by way of any adiabatic process. We will show that this statement is consistent with the Kelvin-Planck statement of the Second Law. [Pg.68]

Since dS is an exact differential, equations for dS = 0 can be integrated. The integration yields a family of solution surfaces, S = S(.vi,... x ) = constant. Each solution surface contains a set of thermodynamic states for which the entropy is constant.hh... [Pg.78]


See other pages where Thermodynamics state is mentioned: [Pg.158]    [Pg.721]    [Pg.174]    [Pg.594]    [Pg.325]    [Pg.16]    [Pg.364]    [Pg.9]    [Pg.21]    [Pg.29]    [Pg.51]    [Pg.57]    [Pg.60]    [Pg.150]    [Pg.305]    [Pg.753]    [Pg.57]    [Pg.178]    [Pg.470]    [Pg.1126]    [Pg.1126]    [Pg.485]    [Pg.877]    [Pg.637]    [Pg.111]    [Pg.646]    [Pg.207]    [Pg.465]    [Pg.466]    [Pg.472]   
See also in sourсe #XX -- [ Pg.488 , Pg.489 ]




SEARCH



State, thermodynamic

© 2024 chempedia.info