Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics entropy change

In thermodynamics, entropy change is defined in a reversible process as... [Pg.113]

Statement of the Second Law of Thermodynamics Entropy Changes and Entropy Creation. [Pg.34]

Because this process is isothermal, we can use Equation 8.8 to calculate the thermodynamic entropy change... [Pg.433]

Any change taking place which results in an increase in entropy has a positive entropy change (AS). Most spontaneous thermodynamic processes are accompanied by an increase in entropy. Entropy has units of Joules per degree K per mole. For representative values see table on p. 393. [Pg.158]

By the standard methods of statistical thermodynamics it is possible to derive for certain entropy changes general formulas that cannot be derived from the zeroth, first, and second laws of classical thermodynamics. In particular one can obtain formulae for entropy changes in highly di.sperse systems, for those in very cold systems, and for those associated, with the mixing ofvery similar substances. [Pg.374]

A moment s reflection will convince us that these probabilities can be used as thermodynamic probabilities in Eq. (3.21) to calculate the entropy change on stretching ... [Pg.147]

Second Law of Thermodynamics. The entropy change of any system together with its surroundings is positive for a real process, approaching zero as the process approaches reversibiUty ... [Pg.481]

The thermodynamic properties of the solid silicates show the expected entropy change of formation from the constituent oxides of nearly zero, which is typical of the reaction type... [Pg.308]

An important question for chemists, and particularly for biochemists, is, Will the reaction proceed in the direction written J. Willard Gibbs, one of the founders of thermodynamics, realized that the answer to this question lay in a comparison of the enthalpy change and the entropy change for a reaction at a given temperature. The Gibbs free energy, G, is defined as... [Pg.61]

The second law of thermodynamics also consists of two parts. The first part is used to define a new thermodynamic variable called entropy, denoted by S. Entropy is the measure of a system s energy that is unavailable for work.The first part of the second law says that if a reversible process i f takes place in a system, then the entropy change of the system can be found by adding up the heat added to the system divided by the absolute temperature of the system when each small amount of heat is added ... [Pg.1127]

The relationship between entropy change and spontaneity can be expressed through a basic principle of nature known as the second law of thermodynamics. One way to state this law is to say that in a spontaneous process, there is a net increase in entropy, taking into account both system and surroundings. That is,... [Pg.457]

In principle, the second law can be used to determine whether a reaction is spontaneous. To do that, however, requires calculating the entropy change for the surroundings, which is not easy. We follow a conceptually simpler approach (Section 17.3), which deals only with the thermodynamic properties of chemical systems. [Pg.458]

The equilibrium concentrations of many disubstituted benzenes (containing alkyl and halogen substituents) show that the meta isomer is in nearly all cases the most thermodynamically stable. It is not obvious why this should be so. Shine182 had discussed this problem in terms of the relative sizes of the standard enthalpy and entropy changes between any pair of isomers. [Pg.481]

Doubling the number of molecules increases the number of microstates from W to W2, and so the entropy changes from k In W to k In W2, or 2k In W. Therefore, the statistical entropy, like the thermodynamic entropy, is an extensive property. [Pg.401]

The equations used to calculate changes in the statistical entropy and the thermodynamic entropy lead to the same result. [Pg.401]

It should be born in mind, however, that the activation parameters calculated refer to the sum of several reactions, whose enthalpy and/or entropy changes may have different signs from those of the decrystalUzation proper. Specifically, the contribution to the activation parameters of the interactions that occur in the solvent system should be taken into account. Consider the energetics of association of the solvated ions with the AGU. We may employ the extra-thermodynamic quantities of transfer of single ions from aprotic to protic solvents as a model for the reaction under consideration. This use is appropriate because recent measurements (using solvatochromic indicators) have indicated that the polarity at the surface of cellulose is akin to that of aliphatic alcohols [99]. Single-ion enthalpies of transfer indicate that Li+ is more efficiently solvated by DMAc than by alcohols, hence by cellulose. That is, the equilibrium shown in Eq. 7 is endothermic ... [Pg.123]

In a reaction in which the number of product molecules is equal to the number of reactant molecules, (e.g., A + B —> C + D), entropy effects are usually small, but if the number of molecules is increased (e.g., A —> B + C), there is a large gain in entropy because more arrangements in space are possible when more molecules are present. Reactions in which a molecule is cleaved into two or more parts are therefore thermodynamically favored by the entropy factor. Conversely, reactions in which the number of product molecules is less than the number of reactant molecules show entropy decreases, and in such cases there must be a sizable decrease in enthalpy to overcome the unfavorable entropy change. [Pg.278]

C14-0087. Calculate the standard entropy change at 298 K of each of the following reactions, which are important in the chemistry of coal. Assume that coal has the same thermodynamic properties as graphite. [Pg.1038]

A certain ambiguity arises in the proper choice of the thermodynamic parameter p, since entropy changes due to solvent orientation are neglected. The available experimental data (cf. Sect. 4) indicate, however, that the free energy of reaction for systems showing a spin change is close to zero. The numerical analysis has been therefore performed for the specific case p = 0, for which value the rate constant in Fig. 15 has been computed as a function of S and h lkgT. [Pg.96]

In thermodynamics, entropy enjoys the status as an infallible criterion of spontaneity. The concept of entropy could be used to determine whether or not a given process would take place spontaneously. It has been found that in a natural or spontaneous process there would be an increase in the entropy of the system. This is the most general criterion of spontaneity that thermodynamics offers however, to use this concept one must consider the entropy change in a process under the condition of constant volume and internal energy. Though infallible, entropy is thus not a very convenient criterion. There have, therefore, been attempts to find more suitable thermodynamic functions that would be of greater practical... [Pg.239]

This is an expression of Nernst s postulate which may be stated as the entropy change in a reaction at absolute zero is zero. The above relationships were established on the basis of measurements on reactions involving completely ordered crystalline substances only. Extending Nernst s result, Planck stated that the entropy, S0, of any perfectly ordered crystalline substance at absolute zero should be zero. This is the statement of the third law of thermodynamics. The third law, therefore, provides a means of calculating the absolute value of the entropy of a substance at any temperature. The statement of the third law is confined to pure crystalline solids simply because it has been observed that entropies of solutions and supercooled liquids do not approach a value of zero on being cooled. [Pg.245]


See other pages where Thermodynamics entropy change is mentioned: [Pg.181]    [Pg.611]    [Pg.590]    [Pg.272]    [Pg.84]    [Pg.228]    [Pg.255]    [Pg.63]    [Pg.358]    [Pg.362]    [Pg.364]    [Pg.626]    [Pg.63]    [Pg.133]    [Pg.198]    [Pg.63]    [Pg.80]    [Pg.655]    [Pg.659]    [Pg.662]    [Pg.685]    [Pg.412]    [Pg.54]    [Pg.48]    [Pg.668]    [Pg.987]    [Pg.442]    [Pg.1268]    [Pg.173]    [Pg.221]   
See also in sourсe #XX -- [ Pg.39 , Pg.335 , Pg.337 , Pg.349 ]




SEARCH



Entropy change

Entropy changes, thermodynamic temperature

Entropy thermodynamic

Thermodynamic change

Thermodynamics calculating entropy change

Thermodynamics change

Thermodynamics chemical reaction entropy changes

Thermodynamics entropy

Thermodynamics of DNA-helix formation Correlation between enthalpy and entropy changes

© 2024 chempedia.info