Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The phase rule and non-stoichiometry

In this chapter, we discuss classical non-stoichiometry derived from various kinds of point defects. To derive the phase rule, which is indispensable for the understanding of non-stoichiometry, the key points of thermodynamics are reviewed, and then the relationship between the phase rule, Gibbs free energy, and non-stoichiometry is discussed. The concentrations of point defects in thermal equilibrium for many types of defect structure are calculated by simple statistical thermodynamics. In Section 1.4 examples of non-stoichiometric compounds are shown referred to published papers. [Pg.1]

Non-stoichiometry, which originates from various kinds of lattice defect, can be derived from the phase rule. As an introduction, let us consider a trial experiment to understand non-stoichiometry (this experiment is, in principle, analogous to the one described in Section 1.4.8). Figure 1.1 shows a reaction vessel equipped with a vacuum pump, pressure gauge for oxygen gas, pressure controller for oxygen gas, thermometer, and chemical balance. The temperature of the vessel is controlled by an outer-furnace and the vessel has a special window for in-situ X-ray diffraction. A quantity of metal powder... [Pg.1]

The relation between the non-stoichiometry and the equilibrium oxygen pressure mentioned in Section 1.1 can be deduced from the phase rule. For the purpose of the derivation of the phase rule, we shall review fundamental thermodynamics. Gibbs free energy G is defined by the relation... [Pg.5]


See other pages where The phase rule and non-stoichiometry is mentioned: [Pg.5]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.5]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.210]    [Pg.229]    [Pg.83]    [Pg.229]    [Pg.163]    [Pg.29]    [Pg.376]    [Pg.388]    [Pg.442]   


SEARCH



Phase rule

THE PHASE RULE

The rule

© 2024 chempedia.info