Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tertiary alcohols, oxidation

Tertiary alcohols are usually degraded unselectively by strong oxidants. Anhydrous chromium trioxide leads to oxidative ring opening of tertiary cycloalkanols (L.F. Fieser, 1948). [Pg.136]

Tertiary alcohols have no hydrogen on their hydroxyl bearing carbon and do not undergo oxidation readily... [Pg.642]

In the presence of strong oxidizing agents at elevated temperatures oxidation of tertiary alcohols leads to cleavage of the various carbon-carbon bonds at the hydroxyl bearing carbon atom and a complex mixture of products results... [Pg.642]

Olefins add anhydrous acetic acid to give esters, usually of secondary or tertiary alcohols propjiene [115-07-1] yields isopropyl acetate [108-21-4], isobutjiene [115-11-7] gives tert-huty acetate [540-88-5]. Minute amounts of water inhibit the reaction. Unsaturated esters can be prepared by a combined oxidative esterification over a platinum group metal catalyst. Eor example, ethylene-air-acetic acid passed over a palladium—Hthium acetate catalyst yields vinyl acetate. [Pg.66]

Moderate yields of acids and ketones can be obtained by paHadium-cataly2ed carbonylation of boronic acids and by carbonylation cross-coupling reactions (272,320,321). In an alternative procedure for the carbonylation reaction, potassium trialkylborohydride ia the presence of a catalytic amount of the free borane is utilized (322). FiaaHy, various tertiary alcohols including hindered and polycycHc stmctures become readily available by oxidation of the organoborane iatermediate produced after migration of three alkyl groups (312,313,323). [Pg.318]

Industrial specifications for aHphatic tertiary amine oxides generally requite an amine oxide content of 20—50%. These products may contain as much as 5% unreacted amine, although normally less than 2% is present. Residual hydrogen peroxide content is usually less than 0.5%. The most common solvent systems employed are water and aqueous isopropyl alcohol, although some amine oxides are available ia aoapolar solveats. Specificatioas for iadividual products are available from the producers. [Pg.192]

Sulfation by sulfamic acid has been used ia the preparation of detergents from dodecyl, oleyl, and other higher alcohols. It is also used ia sulfating phenols and phenol—ethylene oxide condensation products. Secondary alcohols react ia the presence of an amide catalyst, eg, acetamide or urea (24). Pyridine has also been used. Tertiary alcohols do not react. Reactions with phenols yield phenyl ammonium sulfates. These reactions iaclude those of naphthols, cresol, anisole, anethole, pyrocatechol, and hydroquinone. Ammonium aryl sulfates are formed as iatermediates and sulfonates are formed by subsequent rearrangement (25,26). [Pg.62]

Esters derived from the primary alcohols are the most stable and those derived from the tertiary alcohols are the least stable. The decomposition temperature is lower in polar solvents, eg, dimethyl sulfoxide (DMSO), with decomposition occurring at 20°C for esters derived from the tertiary alcohols (38). Esters of benzyl xanthic acid yield stilbenes on heating, and those from neopentyl alcohols thermally rearrange to the corresponding dithiol esters (39,40). The dialkyl xanthate esters catalytically rearrange to the dithiol esters with conventional Lewis acids or trifluoroacetic acid (41,42). The esters are also catalytically rearranged to the dithiolesters by pyridine Ai-oxide catalysts (43) ... [Pg.363]

When tertiary alcohols are oxidized with bromine and a silver salt, tetrahydrofutan derivatives result (34). [Pg.283]

Citrate itself poses a problem it is a poor candidate for further oxidation because it contains a tertiary alcohol, which could be oxidized only by breaking a carbon-carbon bond. An obvious solution to this problem is to isomer-ize the tertiary alcohol to a secondary alcohol, which the cycle proceeds to do in the next step. [Pg.648]

Perhaps the most valuable reaction of alcohols is their oxidation to yield car-bony compounds—the opposite of the reduction of carbonyl compounds to yield alcohols. Primary alcohols yield aldehydes or carboxylic acids, secondary alcohols yield ketones, but tertiary alcohols don t normally react with most oxidizing agents. [Pg.623]

The relationship between 9 and its predecessor 10 is close. Oxidation of the allylic C-3 methylene group in 10 and elimination of the methoxy group could furnish enone 9. Retrosynthetic disassembly of ring E in 10 furnishes tertiary alcohol 11 as a viable precursor. That treatment of 11 with a catalytic amount of acid will induce the formation of a transient oxonium ion at C-12 which is then intercepted by the appropriately placed C-4 tertiary hydroxyl group is a very reasonable proposition. As we will see, the introduction of the requisite C-4 hydroxyl group is straightforward from intermediate 12. [Pg.455]

The use of ethyl ethylthiomethyl sulphoxide in this reaction leads to the desired addition products in much better yields (95-97%). These products were then converted into ketene dithioacetal monoxide derivatives 430 by a sequence of reactions (equation 258)505. Reaction of 2-lithio-l,3-dithiane-l-oxide with benzophenone affords a mixture of the diastereoisomeric tertiary alcohols 431 in a ratio which is temperature dependent (cis trans changes from 3 1 at — 78 °C to 1 1 at room temperature)268. [Pg.330]

Compounds containing susceptible C—H bonds can be oxidized to alcohols. " Nearly always, the C—H bond involved is tertiary, so the product is a tertiary alcohol. This is partly because tertiary C—H bonds are more susceptible to free-radical attack than primary and secondary bonds and partly because the reagents involved would oxidize primary and secondary alcohols further. In the best method, the reagent is ozone and the substrate is absorbed on silica gel. Yields as high as 99% have been... [Pg.914]

Thirdly, if it is not possible to apply the SRS technique, it can be established whether a primary, secondary or tertiary alcohol is present by oxidizing the alcohol on the chromatographic zone and then subjecting the oxidation product to a detection reaction. On oxidation primary alcohols form aldehydes, secondary alcohols ketones and tertiary alcohols are not oxidized. [Pg.38]

This dry ozonation procedure is a general method for hydrox-ylation of tertiary carbon atoms in saturated compounds (Table 1). The substitution reaction occurs with predominant retention of configuration. Thus cis-decalin gives the cis-l-decalol, whereas cis- and frans-l,4-dimethylcyclohexane afford cis- and trans-1,4-dimethylcyclohexanol, respectively. The amount of epimeric alcohol formed in these ozonation reactions is usually less than 1%. The tertiary alcohols may be further oxidized to diols by repeating the ozonation however, the yields in these reactions are poorer. For instance, 1-adamantanol is oxidized to 1,3-adamantane-diol in 43% yield. Secondary alcohols are converted to the corresponding ketone. This method has been employed for the hydroxylation of tertiary positions in saturated acetates and bromides. [Pg.91]

The oxidation of tertiary alcohols by chromic acid is comparatively slow and shows a zero-order dependence of the rate upon oxidant concentration For 1-methylcyclohexanol the kinetics are... [Pg.307]

As with chromic acid, tertiary alcohols are oxidised only very slowly with degradation. The rate expression for oxidation of secondary alcohols is ... [Pg.308]

All the oxidants convert primary and secondary alcohols to aldehydes and ketones respectively, albeit with a great range of velocities. Co(III) attacks even tertiary alcohols readily but the other oxidants generally require the presence of a hydrogen atom on the hydroxylated carbon atom. Spectroscopic evidence indicates the formation of complexes between oxidant and substrate in some instances and this is supported by the frequence occurrence of Michaelis-Menten kinetics. Carbon-carbon bond fission occurs in certain cases. [Pg.376]


See other pages where Tertiary alcohols, oxidation is mentioned: [Pg.435]    [Pg.122]    [Pg.165]    [Pg.515]    [Pg.435]    [Pg.122]    [Pg.165]    [Pg.515]    [Pg.18]    [Pg.47]    [Pg.208]    [Pg.282]    [Pg.317]    [Pg.137]    [Pg.439]    [Pg.247]    [Pg.390]    [Pg.155]    [Pg.57]    [Pg.139]    [Pg.600]    [Pg.238]    [Pg.243]    [Pg.649]    [Pg.42]    [Pg.415]    [Pg.769]    [Pg.1327]    [Pg.1422]    [Pg.240]    [Pg.532]    [Pg.309]   
See also in sourсe #XX -- [ Pg.221 ]

See also in sourсe #XX -- [ Pg.425 ]




SEARCH



Acetylenic tertiary alcohols, oxidation

Oxidation of Tertiary Alcohols

Oxidation of tertiary allylic alcohol

Oxides tertiary

Tertiary allylic alcohols, oxidative

Tertiary allylic alcohols, oxidative Collins reagent

Tertiary allylic alcohols, oxidative rearrangement

© 2024 chempedia.info