Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Telechelic chain polymerizations

Note 1 Reactive end-groups in telechelic polymers come from initiator or termination or chain transfer agents in chain polymerizations, but not from monomer(s) as in polycondensations and polyadditions. [Pg.244]

End-functional polymers, including telechelic and other di-end functional polymers, can be produced by conventional radical polymerization with the aid of functional initiators (Section 7,5.1), chain transfer agents (Section 7.5.2), monomers (Section 7.5.4) or inhibitors (Section 7.5.5). Recent advances in our understanding of radical polymerization offer greater control of these reactions and hence of the polymer functionality. Reviews on the synthesis of end-functional polymers include those by Colombani,188 Tezuka,1 9 Ebdon,190 Boutevin,191 Heitz,180 Nguyen and Marechal,192 Brosse et al.rm and French.194... [Pg.374]

When a polymer is prepared by radical polymerization, the initiator derived chain-end functionality will depend on the relative significance and specificity of the various chain end forming reactions. Tlius, for the formation of telechelic polymers ... [Pg.375]

In one of their notable examples, the hydroboration polymerization of low molecular weight allyl-telechelic polyisobutylene with tripylborane (trip = 2,4,6-triisopropylphenyl) was found to yield air-stable organoboron segmented block copolymers. These boron main-chain polymers (8) (Fig. 8), unlike the general ones, were stable to air. The stability was due to the steric hindrance of the bulky tripyl groups preventing oxygen attack of the borons.28... [Pg.26]

The transformation of the chain end active center from one type to another is usually achieved through the successful and efficient end-functionalization reaction of the polymer chain. This end-functionalized polymer can be considered as a macroinitiator capable of initiating the polymerization of another monomer by a different synthetic method. Using a semitelechelic macroinitiator an AB block copolymer is obtained, while with a telechelic macroinitiator an ABA triblock copolymer is provided. The key step of this methodology relies on the success of the transformation reaction. The functionalization process must be 100% efficient, since the presence of unfunctionalized chains leads to a mixture of the desired block copolymer and the unfunctionalized homopolymer. In such a case, control over the molecular characteristics cannot be obtained and an additional purification step is needed. [Pg.62]

The resulting polymers always have the same functional group X at both chain ends. Therefore, telechelic polymers can be readily synthesized by the two-component iniferter system. An example is the polymerization of several monomers with 4,4J-azobiscyanovaleric acid (16) and dithiodiglycolic acid (17) as the initiator and the chain transfer agent, respectively, to synthesize the polymers having carboxyl groups at both chain ends [69]. [Pg.84]

Nair et al. studied the kinetics of the polymerization of MMA at 60-95 °C using N,1SP-diethyl-NjW-di(hydroxyethyl)thiuram disulfide (30a) as the thermal in-iferter [142]. The dependence of the iniferter concentration on the polymerization rate was examined. The chain transfer constant of the propagating radical of MMA to 30a was determined to be 0.23-0.46 at 60-95 °C, resulting in the activation energy of 37.6 kj/mol for the chain transfer. Other derivatives 30b-30d were also prepared and used to derive telechelic polymers with the terminal phosphorus, amino, and other functional aromatic groups [143-145]. Thermal polymerization was also investigated with the end-functional poly(St) and poly(MMA) which were prepared using the iniferter 13 [146]. [Pg.92]

Bismaleimide (BMI) polymers are produced by reaction of a diamine and a bismaleimide (Eq. 2-211) [de Abajo, 1988, 1999 Mison and Sillion, 1999]. Polymerization is carried out with the bismaleimide in excess to produce maleimide end-capped telechelic oligomers (XLVI). Heating at temperatures of 180°C and higher results in crosslinking via radical chain... [Pg.154]

A telechelic polystyrene containing two carboxyl groups at one end of a polymer can be used as a macromonomer in a step polymerization with a diol or diamine to yield a polyester or polyamide containing graft chains of polystyrene. The required telechelic polymer is obtained by radical polymerization of styrene in the presence of 2-mercaptosuccinic acid. [Pg.759]

A series of interesting block copolymer architectures has also been prepared by Zhang et al. In a first paper, the synthesis of H-shaped triblock copolymers was demonstrated from enzymatically obtained PCL diol after end-functionalization with a difunctional ATRP initiator [40]. This allowed the growth of two PS chains from each end of the telechelic PCL. When methanol instead of glycol was used as the initiator in the initial enzymatic CL polymerization, a PCL with one hydroxyl endgroup was obtained. Functionalization of this endgroup with the difunctional ATRP initiator and subsequent ATRP of styrene or GMA resulted in Y-shaped polymers (Scheme 3) [41, 42]. [Pg.90]


See other pages where Telechelic chain polymerizations is mentioned: [Pg.43]    [Pg.2]    [Pg.30]    [Pg.8206]    [Pg.340]    [Pg.182]    [Pg.589]    [Pg.25]    [Pg.319]    [Pg.163]    [Pg.35]    [Pg.44]    [Pg.73]    [Pg.126]    [Pg.656]    [Pg.664]    [Pg.665]    [Pg.47]    [Pg.48]    [Pg.177]    [Pg.212]    [Pg.200]    [Pg.87]    [Pg.103]    [Pg.146]    [Pg.155]    [Pg.155]    [Pg.331]    [Pg.331]    [Pg.440]    [Pg.758]    [Pg.119]    [Pg.640]    [Pg.725]    [Pg.61]    [Pg.24]    [Pg.239]    [Pg.85]    [Pg.5]   
See also in sourсe #XX -- [ Pg.220 ]




SEARCH



Telechelic

Telechelic living” chain polymerization

Telechelics

© 2024 chempedia.info