Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tandem mass spectrometry neutral loss experiment

Fig. 11.16. Representation of three tandem mass spectrometry (MS/MS) scan modes illustrated for a triple quadrupole instrument configuration. The top panel shows the attributes of the popular and prevalent product ion CID experiment. The first mass filter is held at a constant m/z value transmitting only ions of a single mlz value into the collision region. Conversion of a portion of translational energy into internal energy in the collision event results in excitation of the mass-selected ions, followed by unimolecular dissociation. The spectrum of product ions is recorded by scanning the second mass filter (commonly referred to as Q3 ). The center panel illustrates the precursor ion CID experiment. Ions of all mlz values are transmitted sequentially into the collision region as the first analyzer (Ql) is scanned. Only dissociation processes that generate product ions of a specific mlz ratio are transmitted by Q3 to the detector. The lower panel shows the constant neutral loss CID experiment. Both mass analyzers are scanned simultaneously, at the same rate, and at a constant mlz offset. The mlz offset is selected on the basis of known neutral elimination products (e.g., H20, NH3, CH3COOH, etc.) that may be particularly diagnostic of one or more compound classes that may be present in a sample mixture. The utility of the two compound class-specific scans (precursor ion and neutral loss) is illustrated in Fig. 11.17. Fig. 11.16. Representation of three tandem mass spectrometry (MS/MS) scan modes illustrated for a triple quadrupole instrument configuration. The top panel shows the attributes of the popular and prevalent product ion CID experiment. The first mass filter is held at a constant m/z value transmitting only ions of a single mlz value into the collision region. Conversion of a portion of translational energy into internal energy in the collision event results in excitation of the mass-selected ions, followed by unimolecular dissociation. The spectrum of product ions is recorded by scanning the second mass filter (commonly referred to as Q3 ). The center panel illustrates the precursor ion CID experiment. Ions of all mlz values are transmitted sequentially into the collision region as the first analyzer (Ql) is scanned. Only dissociation processes that generate product ions of a specific mlz ratio are transmitted by Q3 to the detector. The lower panel shows the constant neutral loss CID experiment. Both mass analyzers are scanned simultaneously, at the same rate, and at a constant mlz offset. The mlz offset is selected on the basis of known neutral elimination products (e.g., H20, NH3, CH3COOH, etc.) that may be particularly diagnostic of one or more compound classes that may be present in a sample mixture. The utility of the two compound class-specific scans (precursor ion and neutral loss) is illustrated in Fig. 11.17.
Tandem mass spectrometry (MS-MS) is a term which covers a number of techniques in which one stage of mass spectrometry, not necessarily the first, is used to isolate an ion of interest and a second stage is then used to probe the relationship of this ion with others from which it may have been generated or which it may generate on decomposition. The two stages of mass spectrometry are related in specific ways in order to provide the desired analytical information. There are a large number of different MS-MS experiments that can be carried out [9, 10] but the four most widely used are (i) the product-ion scan, (ii) the precursor-ion scan, (iii) the constant-neutral-loss scan, and (iv) selected decomposition monitoring. [Pg.47]


See other pages where Tandem mass spectrometry neutral loss experiment is mentioned: [Pg.272]    [Pg.88]    [Pg.89]    [Pg.274]    [Pg.263]    [Pg.329]    [Pg.87]    [Pg.328]    [Pg.69]   
See also in sourсe #XX -- [ Pg.30 , Pg.692 ]




SEARCH



Mass spectrometry experiments

Mass spectrometry tandem

Neutral loss

Neutral loss experiment

Tandem experiments

Tandem spectrometry

© 2024 chempedia.info