Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tachycardia nodal

Propranolol. Propranolol hydrochloride, considered the prototype of the P-adrenoceptor blocking agents, has been in use since 1964. It is a nonselective, highly Hpid-soluble P-adrenoceptor blocker having no ISA. It is a mixture of (+) and (—) enantiomers, and the (—) enantiomer is the active moiety. The local anesthetic effects of propranolol are equipotent to those of Hdocaine [137-58-6] C 4H22N20, (see Anesthetics). Therapeutic effects include termination of catecholamine-induced arrhythmias, conversion of SA nodal tachycardias (including flutter and fibrillation) and AV nodal tachyarrhythmias to normal sinus rhythm, digitahs-induced arrhythmias, and ventricular arrhythmias (1,2). The dmg also has cardioprotective properties (37,39). [Pg.119]

Compare and contrast the risk factors for and the features, mechanisms, etiologies, symptoms, and goals of therapy of (1) sinus bradycardia (2) atrioventricular (AV) nodal blockade (3) atrial fibrillation (AF) (4) paroxysmal supraventricular tachycardia (PSVT) ... [Pg.107]

Abnormal initiation of electrical impulses occurs as a result of abnormal automaticity. If the automaticity of the SA node increases, this results in an increased rate of generation of impulses and a rapid heart rate (sinus tachycardia). If other cardiac fibers become abnormally automatic, such that the rate of initiation of spontaneous impulses exceeds that of the SA node, other types of tachyarrhythmias may occur. Many cardiac fibers possess the capability for automaticity, including the atrial tissue, the AV node, the Purkinje fibers, and the ventricular tissue. In addition, fibers with the capability of initiating and conducting electrical impulses are present in the pulmonary veins. Abnormal atrial automaticity may result in premature atrial contractions or may precipitate atrial tachycardia or atrial fibrillation (AF) abnormal AV nodal automaticity may result in junctional tachycardia (the AV node is also sometimes referred to as the AV junction). Abnormal automaticity in the ventricles may result in ventricular premature depolarizations (VPDs) or may precipitate ventricular tachycardia (VT) or ventricular fibrillation (VF). In addition, abnormal automaticity originating from the pulmonary veins is a precipitant of AF. [Pg.110]

Paroxysmal supraventricular tachycardia (PSVT) is a term that refers to a number of arrhythmias that occur above the ventricles and that require atrial or AV nodal tissue for initiation and maintenance.32 The most common of these arrhythmias is... [Pg.122]

O Paroxysmal supraventricular tachycardia is caused by reentry that includes the AV node as a part of the reentrant circuit. Typically, electrical impulses travel forward (antegrade) down the AV node and then travel back up the AV node (retrograde) in a repetitive circuit. In some patients, the retrograde conduction pathway of the reentrant circuit may exist in extra-AV nodal tissue adjacent to the AV node. One of these pathways usually conducts impulses rapidly, while the other usually conducts impulses slowly. Most commonly, during PSVT the impulse conducts antegrade through the slow... [Pg.123]

Verapamil (Class IV antiarrhythmic drug) is an effective agent for atrial or supraventricular tachycardia. A Ca++ channel blocker, it is most potent in tissues where the action potentials depend on calcium currents, including slow-response tissues such as the SA node and the AV node. The effects of verapamil include a decrease in heart rate and in conduction velocity of the electrical impulse through the AV node. The resulting increase in duration of the AV nodal delay, which is illustrated by a lengthening of the PR segment in the ECG, reduces the number of impulses permitted to penetrate to the ventricles to cause contraction. [Pg.176]

The answer is e. (Hardman, pp 858-874.) Because verapamil, a Ca channel blocker, has a selective depressing action on AV nodal tissue, it is an ideal drug for both immediate and prophylactic therapy of supraventricular tachycardia (SVT). Nifedipine, another Ca channel blocker, has little effect on SAT Lidocaine and adenosine are parenteral drugs with short ha If-lives and, thus, are not suitable for prophylactic therapy. Procainamide is more suitable for ventricular arrhythmias and has the potential for serious adverse reactions with long-term use. [Pg.121]

Type II drugs include /Tadrenergic antagonists clinically relevant mechanisms result from their antiadrenergic actions. /3- Blockers are most useful in tachycardias in which nodal tissues are abnormally automatic or are a portion of a reentrant loop. These agents are also helpful in slowing ventricular response in atrial tachycardias (e.g., AF) by their effects on the AV node. [Pg.77]

Type IV drugs inhibit calcium entry into the cell, which slows conduction, prolongs refractoriness, and decreases SA and AV nodal automaticity. Calcium channel antagonists are effective for automatic or reentrant tachycardias that arise from or use the SA or AV nodes. [Pg.78]

FIGURE 6-2. Algorithm for the treatment of acute (top portion) paroxysmal supraventricular tachycardia and chronic prevention of recurrences (bottom portion). Note For empiric bridge therapy prior to radiofrequency ablation procedures, calcium channel blockers (or other atrioventricular [AV] nodal blockers) should not be used if the patient has AV reentry with an accessory pathway. (AAD, antiarrhythmic drugs AF, atrial fibrillation AP, accessory pathway AVN, atrioventricular nodal AVNRT, atrioventricular nodal reentrant tachycardia AVRT, atrioventricular reentrant tachycardia DCC, direct-current cardioversion ECG, electrocardiographic monitoring EPS, electrophysiologic studies PRN, as needed VT, ventricular tachycardia.)... [Pg.83]

Atrial fibrillation For the prevention of paroxysmal atrial fibrillation/flutter (PAF) associated with disabling symptoms and paroxysmal supraventricular tachycardias (PSVT), including atrioventricular nodal reentrant tachycardia, atrioventricular reentrant tachycardia, and other supraventricular tachycardias of unspecified mechanism associated with disabling symptoms in patients without structural heart disease. [Pg.457]

Class Ic Ventricular tachycardia Tachycardia associated with the Wolff-Parkinson-White (WPW) syndrome AV-nodal re-entry tachycardia... [Pg.341]

Amiodarone is effective in maintaining sinus rhythm in most patients with paroxysmal atrial hbrillation and in many patients with persistent atrial hbrillation. It is also effective in preventing recurrences of A-V nodal reentry and atrial tachyarrhythmias and in the prevention of reentrant rhythms and atrial hbrillation in patients with Wohf-Parkinson-White syndrome. Also, it is the most efficacious therapy for postoperative junctional ectopic tachycardia. [Pg.187]

The antiarrhythmic action is due to cardiac adrenergic blockade. It decreases the slope of phase 4 depolarization and automaticity in SA node, Purkinje fibres and other ectopic foci. It also prolongs the effective refractory period of AV node and impedes AV conduction. ECG shows prolonged PR interval. It is useful in sinus tachycardia, atrial and nodal extrasystoles. It is also useful in sympathetically mediated arrhythmias in pheochromocytoma and halothane anaesthesia. [Pg.192]

This agent also has some class lA and class II effects. It is effective for the treatment of ventricular and supraventricular tachycardias (AV nodal and accessory pathway re-entry, atrial flutter and fibrillation). Propafenone is useful in converting recent-onset atrial fibrillation or flutter to sinus rhythm, and for terminating paroxysmal supraventricular tachycardia. Its pro-ariythmic and myocardial depressant effects limit its use, especially in patients with poor ventricular function. [Pg.159]

In adult patients without heart failure or sinoatrial or atrioventricular nodal disease, parenteral verapamil can be used to terminate supraventricular tachycardia, although adenosine is the agent of first choice. Verapamil dosage is an initial bolus of 5 mg administered over 2-5 minutes, followed a few minutes later by a second 5 mg bolus if needed. Thereafter, doses of 5-10 mg can be administered every 4-6 hours, or a constant infusion of 0.4 mcg/kg/min may be used. [Pg.292]

Adenosine is a nucleoside that occurs naturally throughout the body. Its half-life in the blood is less than 10 seconds. Its mechanism of action involves activation of an inward rectifier K+ current and inhibition of calcium current. The results of these actions are marked hyperpolarization and suppression of calcium-dependent action potentials. When given as a bolus dose, adenosine directly inhibits atrioventricular nodal conduction and increases the atrioventricular nodal refractory period but has lesser effects on the sinoatrial node. Adenosine is currently the drug of choice for prompt conversion of paroxysmal supraventricular tachycardia to sinus rhythm because of its high efficacy (90-95%) and very short duration of action. It is usually given in a bolus dose of 6 mg followed, if necessary, by a dose of 12 mg. An uncommon variant of ventricular tachycardia is adenosine-sensitive. The drug is less effective in the presence of adenosine receptor blockers such as theophylline or caffeine, and its effects are potentiated by adenosine uptake inhibitors such as dipyridamole. [Pg.293]

Verapamil Calcium channel (ICa-i type) blockade Slows SA node automaticity and AV nodal conduction velocity decreases cardiac contractility t reduces blood pressure Supraventricular tachycardias Oral, IV hepatic metabolism caution in patients with hepatic dysfunction Toxicity Interactions See Chapter 12... [Pg.296]

Digitalis is useful in the management of atrial arrhythmias because of its cardioselective parasympathomimetic effects. In atrial flutter and fibrillation, the depressant effect of the drug on atrioventricular conduction helps to control an excessively high ventricular rate. Digitalis has also been used in the control of paroxysmal atrial and atrioventricular nodal tachycardia. At present, calcium channel blockers and adenosine... [Pg.312]

Biondi B, Fazio S, Coltorti F, Palmieri EA, Carella C, Lombardi G, Sacca L. Clinical case seminar. Reentrant atrioventricular nodal tachycardia induced by levothyroxine. J Clin Endocrinol Metab 1998 83(8) 2643-5. [Pg.353]

During arrhythmias Atrial tachycardia, atrial fibrillation AV nodal tachycardia, AV blockade Premature ventricular contractions, bigeminy, ventricular tachycardia, ventricular fibrillation... [Pg.297]

Verapamil s cardiotoxic effects are dose-related and usually avoidable. A common error has been to administer intravenous verapamil to a patient with ventricular tachycardia misdiagnosed as supraventricular tachycardia. In this setting, hypotension and ventricular fibrillation can occur. Verapamil s negative inotropic effects may limit its clinical usefulness in diseased hearts (see Chapter 12 Vasodilators the Treatment of Angina Pectoris). Verapamil can lead to atrioventricular block when used in large doses or in patients with atrio-ventricular nodal disease. This block can be treated with atropine and -receptor stimulants. In patients with sinus node disease, verapamil can precipitate sinus arrest. [Pg.339]

Flecainide slows conduction in all cardiac cells including the anomalous pathways responsible for the Wolff-Parkinson-White (WPW) syndrome. Together with encainide and moricizine, it underwent clinical trials to establish if suppression of asymptomatic premature beats with antiarrhythmic drugs would reduce the risk of death from arrhythmia after myocardial infarction. The study was terminated after preliminary analysis of 1727 patients revealed that mortality in the groups treated with flecainide or encainide was 7.7% compared with 3.0% in controls. The most likely explanation for the result was the induction of lethal ventricular arrhythmias possibly due to ischaemia by flecainide and encainide, i.e. a proarrhythmic effect. In the light of these findings the indications for flecainide are restricted to patients with no evidence of structural heart disease. The most common indication, indeed where it is the drug of choice, is atrioventricular re-entrant tachycardia, such as AV nodal tachycardia or in the tachycardias associated with the WPW syndrome or similar conditions with anomalous pathways. This should be as a prelude to definitive treatment with radiofrequency ablation. Flecainide may also be useful in patients with paroxysmal atrial fibrillation. [Pg.502]

Digitalis can cause supraventricular extra beats or tachycardia. The combination of such dysrhythmias with atrioventricular block is particularly suggestive of digitalis toxicity and carries a high mortality rate (3,36). Rarely atrial fibrillation (37) and atrial flutter (38) may be attributed to digitalis toxicity. The frequency of atrioventricular nodal block is mentioned above. [Pg.650]

Dofetihde has been used to convert atrial fibrillation and atrial flutter to sinus rhythm, in maintaining sinus rhythm thereafter, in suppressing paroxysmal supraventricular tachycardia, inducible atrioventricular nodal re-entry tachycardia, and inducible sustained ventricular tachycardia, in suppressing the dysrhythmias of the Wolff-Parkinson-White syndrome, and in facilitating conversion of ventricular fibrillation. [Pg.1173]

Naccarelli GV, Jackman WM, Akhtar M, Rinkenberger RL, Friday KJ, Dougherty AH, Tchou P, Yeung-Lai-Wah JA. Efficacy and electrophysiologic effects of encainide for atrioventricular nodal reentrant tachycardia. Am J Cardiol 1988 62(19) L31-6. [Pg.1214]


See other pages where Tachycardia nodal is mentioned: [Pg.50]    [Pg.123]    [Pg.75]    [Pg.332]    [Pg.193]    [Pg.263]    [Pg.347]    [Pg.327]    [Pg.280]    [Pg.305]    [Pg.318]    [Pg.344]    [Pg.258]    [Pg.171]    [Pg.181]    [Pg.62]    [Pg.64]    [Pg.70]    [Pg.172]    [Pg.1371]   
See also in sourсe #XX -- [ Pg.131 ]




SEARCH



Nodal

Tachycardia

© 2024 chempedia.info