Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Symmetry operations equivalent

At this point the reader may feel that we have done little in the way of explaining molecular synnnetry. All we have done is to state basic results, nonnally treated in introductory courses on quantum mechanics, connected with the fact that it is possible to find a complete set of simultaneous eigenfiinctions for two or more commuting operators. However, as we shall see in section Al.4.3.2. the fact that the molecular Hamiltonian //coimmites with and F is intimately coimected to the fact that //commutes with (or, equivalently, is invariant to) any rotation of the molecule about a space-fixed axis passing tlirough the centre of mass of the molecule. As stated above, an operation that leaves the Hamiltonian invariant is a symmetry operation of the Hamiltonian. The infinite set of all possible rotations of the... [Pg.140]

In Section 4.3.f it was shown that there are 3N — 5 normal vibrations in a linear molecule and 3N — 6 in a non-linear molecule, where N is the number of atoms in the molecule. There is a set of fairly simple rules for determining the number of vibrations belonging to each of the symmetry species of the point group to which the molecule belongs. These rules involve the concept of sets of equivalent nuclei. Nuclei form a set if they can be transformed into one another by any of the symmetry operations of the point group. For example, in the C2 point group there can be, as illustrated in Figure 6.18, four kinds of set ... [Pg.162]

For the nanotubes, then, the appropriate symmetries for an allowed band crossing are only present for the serpentine ([ , ]) and the sawtooth ([ ,0]) conformations, which will both have C point group symmetries that will allow band crossings, and with rotation groups generated by the operations equivalent by conformal mapping to the lattice translations Rj -t- R2 and Ri, respectively. However, examination of the graphene model shows that only the serpentine nanotubes will have states of the correct symmetry (i.e., different parities under the reflection operation) at the K point where the bands can cross. Consider the K point at (K — K2)/3. The serpentine case always sat-... [Pg.41]

These elements of symmetry are best recognized by performing various symmetry operations, which are geometrically defined ways of exchanging equivalent parts of a molecule. The 5 symmetry operations are ... [Pg.1290]

Translationengleiche subgroups have an unaltered translation lattice, i.e. the translation vectors and therefore the size of the primitive unit cells of group and subgroup coincide. The symmetry reduction in this case is accomplished by the loss of other symmetry operations, for example by the reduction of the multiplicity of symmetry axes. This implies a transition to a different crystal class. The example on the right in Fig. 18.1 shows how a fourfold rotation axis is converted to a twofold rotation axis when four symmetry-equivalent atoms are replaced by two pairs of different atoms the translation vectors are not affected. [Pg.212]

The group-subgroup relation of the symmetry reduction from diamond to zinc blende is shown in Fig. 18.3. Some comments concerning the terminology have been included. In both structures the atoms have identical coordinates and site symmetries. The unit cell of diamond contains eight C atoms in symmetry-equivalent positions (Wyckoff position 8a). With the symmetry reduction the atomic positions split to two independent positions (4a and 4c) which are occupied in zinc blende by zinc and sulfur atoms. The space groups are translationengleiche the dimensions of the unit cells correspond to each other. The index of the symmetry reduction is 2 exactly half of all symmetry operations is lost. This includes the inversion centers which in diamond are present in the centers of the C-C bonds. [Pg.216]

The molecules shown in Fig. 1 are planar thus, the paper on which they are drawn is an element of symmetry and the reflection of all points through the plane yields an equivalent (congruent) structure. The process of carrying out the reflection is referred to as the symmetry operation a. However, as the atoms of these molecules are essentially point masses, the reflection operations are in each case simply the inversion of the coordinate perpendicular to the plane of symmetry. Following certain conventions, the reflection operation corresponds to z + z for BF3 and benzene, as it is the z axis that is chq ep perpendicular to die plane, while it is jc —> —x for water. It should be evident that the symmetry operation has an effect on the chosen coordinate systems, but not on the molecule itself. [Pg.100]

The special class of transformation, known as symmetry (or unitary) transformation, preserves the shape of geometrical objects, and in particular the norm (length) of individual vectors. For this class of transformation the symmetry operation becomes equivalent to a transformation of the coordinate system. Rotation, translation, reflection and inversion are obvious examples of such transformations. If the discussion is restricted to real vector space the transformations are called orthogonal. [Pg.22]

Each symmetry operation of a group has the effect of turning the symmetrical object (molecule) into itself. An alternative statement of this observation is that each symmetry operation on the molecule is equivalent to multiplication by unity, as shown below for the operators of point group Civ, using H2O as example. [Pg.294]

Crystal lattices can be depicted not only by the lattice translation defined in Eq. (7.2), but also by the performance of various point symmetry operations. A symmetry operation is defined as an operation that moves the system into a new configuration that is equivalent to and indistinguishable from the original one. A symmetry element is a point, line, or plane with respect to which a symmetry operation is performed. The complete ensemble of symmetry operations that define the spatial properties of a molecule or its crystal are referred to as its group. In addition to the fundamental symmetry operations associated with molecular species that define the point group of the molecule, there are additional symmetry operations necessary to define the space group of its crystal. These will only be briefly outlined here, but additional information on molecular symmetry [10] and solid-state symmetry [11] is available. [Pg.189]

The hfs (or quadrupole) tensors of geometrically (chemically) equivalent nuclei can be transformed into each other by symmetry operations of the point group of the paramagnetic metal complex. For an arbitrary orientation of B0 these nuclei may be considered as nonequivalent and the ENDOR spectra are described by the simple expressions in (B 4). If B0 is oriented in such a way that the corresponding symmetry group of the spin Hamiltonian is not the trivial one (Q symmetry), symmetry adapted base functions have to be used in the second order treatment for an accurate description of ENDOR spectra. We discuss the C2v and D4h covering symmetry in more detail. [Pg.19]

Finally, it must be mentioned that localized orbitals are not always simply related to symmetry. There are cases where the localized orbitals form neither a set of symmetry adapted orbitals, belonging to irreducible representations, nor a set of equivalent orbitals, permuting under symmetry operations, but a set of orbitals with little or no apparent relationship to the molecular symmetry group. This can occur, for example, when the symmetry is such that sev-... [Pg.47]

Notice that the symmetry operations of each point group by continued repetition always bring us back to the point from which we started. Considering, however, a space crystalline pattern, additional symmetry operations can be observed. These involve translation and therefore do not occur in point groups (or crystal classes). These additional operations are glide planes which correspond to a simultaneous reflection and translation and screw axis involving simultaneous rotation and translation. With subsequent application of these operations we do not obtain the point from which we started but another, equivalent, point of the lattice. The symbols used for such operations are exemplified as follows ... [Pg.100]

Proceeding in the spirit above it seems reasonable to inquire why s is equal to the number of equivalent rotations, rather than to the total number of symmetry operations for the molecule of interest. Rotational partition functions of the diatomic molecule were discussed immediately above. It was pointed out that symmetry requirements mandate that homonuclear diatomics occupy rotational states with either even or odd values of the rotational quantum number J depending on the nuclear spin quantum number I. Heteronuclear diatomics populate both even and odd J states. Similar behaviors are expected for polyatomic molecules but the analysis of polyatomic rotational wave functions is far more complex than it is for diatomics. Moreover the spacing between polyatomic rotational energy levels is small compared to kT and classical analysis is appropriate. These factors appreciated there is little motivation to study the quantum rules applying to individual rotational states of polyatomic molecules. [Pg.110]

Now, if a suitable space of basis functions is used (a space of basis functions that is closed under the symmetry operations of the group), we can construct a set of representations (each one consisting of 48 matrices) for this space that is particularly useful for our purposes. It is especially relevant that the matrices of each one of these representations can be made equivalent to matrices of lower dimensions. [Pg.240]

Axes of rotation are among the most common of molecular symmetry operations. A onefold axis is a rotation by a full turn, equivalent to the identity. A twofold rotation axis, as in the example of the water molecule, is sometimes called a dyad. Cyclopropane has a threefold axis perpendicular to the plane containing the carbon atoms it also has three twofold axes. Can you visualize them ... [Pg.15]

It is reasonable to hope to assemble a complete set of representations to provide a full and non-redundant description of the symmetry species compatible with a point group The problem is that there are far too many representations of any group. On the one hand, matrices in representations derived from expressing symmetry operations in terms of coordinates - as in problem 5-18 - depend on the coordinate system. Thus there are an infinite number of matrix representations of C2v equivalent to example 7, derivable in different coordinate systems. These add no new information, but it is not necessarily easy to recognize that they are related. Even in the cases of representations not derived from geometric models via coordinate systems, an infinite number of other representations are derivable by similarity transformations. [Pg.43]

The symmetry operations, G, of the space group acting on an atom placed at an arbitrary point in space will generate a set of mo equivalent atoms in the unit cell. Operation of the lattice translations, R, acting on this set generates an infinite array of such atoms, with the finite set of ma atoms being repeated at each point on the lattice. This is illustrated in Fig. 10.1 in which nia = 4 and each of the rectangles defined by the horizontal and vertical lines represents a unit cell that is identical with the one outlined with heavy lines. [Pg.126]

An element of symmetry is possessed by a molecule if, after the associated symmetry operation is carried out, the atoms of that molecule are not perceived to have moved. The molecule is then in an equivalent configuration. The individual atoms may have moved but only to positions previously occupied by identical atoms. [Pg.17]

If the molecule is rotated around the z axis by 120° (360°/3), an equivalent configuration of the molecule is produced. The boron atom does not change its position, and the fluorine atoms exchange places depending upon the direction of the rotation. The rotation described is the symmetry operation associated with the C3 axis of symmetry, and the demonstration of its production of an equivalent configuration of the BF3 molecule is what is required to indicate that the C3 proper axis of symmetry is possessed by that molecule. [Pg.18]

There are other proper axes of symmetry possessed by the BF3 molecule. The three lines joining the boron and fluorine nuclei are all contained by C2 axes (from hereon the term proper is dropped, unless it is absolutely necessary to remove possible confusion) as may be seen from Figure 2.2. The associated symmetry operation of rotating the molecule around one of the C2 axes by 360°/2 = 180° produces an equivalent configuration of the molecule. The boron atom and one of the fluorine atoms do not move whilst the other two fluorine atoms exchange places. There are, then, three C2 axes of symmetry possessed by the BF3 molecule. [Pg.18]

If rotation about an axis by 360°ln followed by reflexion through a plane perpendicular to the axis produces an equivalent configuration of a molecule, then the molecule contains an improper axis of symmetry. Such an axis is denoted by Sn, the associated symmetry operation having been described in the previous sentence. The C3 axis of the PC15 molecule is also an S3 axis. The operation of S3 on PC15 causes the apical (i.e. out-of-plane) chlorine atoms to exchange places. [Pg.20]

Interpretation of NMR spectra depends on the concept of chemical-shift equivalence, an understanding of which depends on stereochemical concepts these are reviewed with special emphasis on interchange through symmetry operations within the molecule, and through rapid structural changes. [Pg.121]

A complete tabulation of operator equivalents for crystals fields of various symmetries can be found in books by Low (5) and by Al tshuler and Kozyrev (9). [Pg.103]


See other pages where Symmetry operations equivalent is mentioned: [Pg.264]    [Pg.264]    [Pg.140]    [Pg.40]    [Pg.340]    [Pg.121]    [Pg.267]    [Pg.100]    [Pg.310]    [Pg.311]    [Pg.147]    [Pg.11]    [Pg.11]    [Pg.325]    [Pg.244]    [Pg.46]    [Pg.103]    [Pg.117]    [Pg.239]    [Pg.246]    [Pg.275]    [Pg.15]    [Pg.128]    [Pg.156]    [Pg.19]   
See also in sourсe #XX -- [ Pg.32 ]

See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Determination of Chemical Shift Equivalence by Interchange Through Symmetry Operations

Equivalence symmetry

Equivalent operations

Operator equivalent

Operator symmetry

Symmetry operations

Symmetry operations symmetries

Symmetry operators/operations

© 2024 chempedia.info