Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surroundings defined

Here =MkT. In a real system the thennal coupling with surroundings would happen at the surface in simulations we avoid surface effects by allowing this to occur homogeneously. The state of the surroundings defines the temperature T of the ensemble. [Pg.2246]

In principle, nucleation should occur for any supersaturation given enough time. The critical supersaturation ratio is often defined in terms of the condition needed to observe nucleation on a convenient time scale. As illustrated in Table IX-1, the nucleation rate changes so rapidly with degree of supersaturation that, fortunately, even a few powers of 10 error in the preexponential term make little difference. There has been some controversy surrounding the preexponential term and some detailed analyses are available [33-35]. [Pg.335]

Defining order in an amorphous solid is problematic at best. There are several qualitative concepts that can be used to describe disorder [7]. In figure Al.3.28 a perfect crystal is illustrated. A simple fonn of disorder involves crystals containing more than one type of atom. Suppose one considers an alloy consisting of two different atoms (A and B). In an ordered crystal one might consider each A surrounded by B and vice versa. [Pg.130]

Flere the subscripts and/refer to the initial and final states of the system and the work is defined as the work perfomied on the system (the opposite sign convention—with as work done by the system on the surroundings—is also in connnon use). Note that a cyclic process (one in which the system is returned to its initial state) is not introduced as will be seen later, a cyclic adiabatic process is possible only if every step is reversible. Equation (A2.1.9), i.e. the mtroduction of t/ as a state fiinction, is an expression of the law of conservation of energy. [Pg.330]

Since is defined as work done on the system, the minimum amount of work necessary to produce a given change in the system is that in a reversible process. Conversely, the amount of work done by the system on the surroundings is maximal when the process is reversible. [Pg.342]

In analogy to the constant-pressure process, constant temperature is defined as meaning that the temperature T of the surroundings remains constant and equal to that of the system in its initial and final (equilibrium) states. First to be considered are constant-temperature constant-volume processes (again Aw = 0). For a reversible process... [Pg.346]

Flead and Silva used occupation numbers obtained from a periodic FIF density matrix for the substrate to define localized orbitals in the chemisorption region, which then defines a cluster subspace on which to carry out FIF calculations [181]. Contributions from the surroundings also only come from the bare slab, as in the Green s matrix approach. Increases in computational power and improvements in minimization teclmiques have made it easier to obtain the electronic properties of adsorbates by supercell slab teclmiques, leading to the Green s fiinction methods becommg less popular [182]. [Pg.2226]

In dilute polymer solutions, hydrodynamic interactions lead to a concerted motion of tire whole polymer chain and tire surrounding solvent. The folded chains can essentially be considered as impenneable objects whose hydrodynamic radius is / / is tire gyration radius defined as... [Pg.2530]

Figure 12, Results for the C2H molecule as calculated along a circle surrounding Che 2 A -3 A conical intersection, The conical intersection is located on the C2v line at a distance of 1,813 A from the CC axis, where ri (=CC distance) 1.2515 A. The center of the circle is located at the point of the conical intersection and defined in terms of a radius < . Shown are the non-adiabatic coupling matrix elements tcp((p ) and the adiabatic-to-diabatic transformation angles y((p i ) as calculated for (ii) and (b) where q = 0.2 A (c) and (d) where q = 0.3 A (e) and (/) where q = 0.4 A. Also shown are the positions of the two close-by (3,4) conical intersections (designated as X34). Figure 12, Results for the C2H molecule as calculated along a circle surrounding Che 2 A -3 A conical intersection, The conical intersection is located on the C2v line at a distance of 1,813 A from the CC axis, where ri (=CC distance) 1.2515 A. The center of the circle is located at the point of the conical intersection and defined in terms of a radius < . Shown are the non-adiabatic coupling matrix elements tcp((p ) and the adiabatic-to-diabatic transformation angles y((p i ) as calculated for (ii) and (b) where q = 0.2 A (c) and (d) where q = 0.3 A (e) and (/) where q = 0.4 A. Also shown are the positions of the two close-by (3,4) conical intersections (designated as X34).
In Section IV, we introduced the topological matrix D [see Eq. (38)] and showed that for a sub-Hilbert space this matrix is diagonal with (-1-1) and (—1) terms a feature that was defined as quantization of the non-adiabatic coupling matrix. If the present three-state system forms a sub-Hilbert space the resulting D matrix has to be a diagonal matrix as just mentioned. From Eq. (38) it is noticed that the D matrix is calculated along contours, F, that surround conical intersections. Our task in this section is to calculate the D matrix and we do this, again, for circular contours. [Pg.708]

There is an intimate connection at the molecular level between diffusion and random flight statistics. The diffusing particle, after all, is displaced by random collisions with the surrounding solvent molecules, travels a short distance, experiences another collision which changes its direction, and so on. Such a zigzagged path is called Brownian motion when observed microscopically, describes diffusion when considered in terms of net displacement, and defines a three-dimensional random walk in statistical language. Accordingly, we propose to describe the net displacement of the solute in, say, the x direction as the result of a r -step random walk, in which the number of steps is directly proportional to time ... [Pg.628]

In a free jet the absence of a pressure gradient makes the momentum flux at any cross section equal to the momentum flux at the inlet, ie, equations 16 and 17 define jet velocity at all points. For a cylindrical jet this leads to a center-line velocity that varies inversely with (x — aig), whereas for slot jets it varies inversely with the square root of (x — Xq As the jet proceeds still further downstream the turbulent entrainment initiated by the jet is gradually subordinated to the turbulence level in the surrounding stream and the jet, as such, disappears. [Pg.93]

Dehydration Processing. Dehydration is one of the oldest means of preserving food. Microbes generally do not grow below a minimum water activity, of 0.65 defined as the equiHbrium relative humidity surrounding food ia a sealed container at a given temperature, ie, no microbes can... [Pg.460]

The use of the single parameter, K, to define the stress field at the crack tip is justified for brittle materials, but its extension to ductile materials is based on the assumption that although some plasticity may occur at the tip the surrounding linear elastic stress field is the controlling parameter. [Pg.90]

Reverberation Control. Reverberation time (T q) is defined as the length of time in seconds for the sound of an instantaneously stopped source in a room to decay by 60 decibels (dB). Reverberation time is one important factor in determining the acoustical character of a space and its suitabiHty for specific activities. For lectures and other speech activities a relatively short reverberation time is desirable so that syllables do not persist and overlap one another, causing difficulty with inteUigibiHty conversely, for music activities, a relatively long reverberation time is desirable to allow blending of the sound and a sense of being surrounded by the music. Without reverberation music usually sounds dull and lifeless. [Pg.312]

The rehabihty level of a product also depends on the operating or environmental conditions, which may produce a variety of failure modes. Rehabihty can only be assessed relative to a defined environment. Unless these points are estabhshed clearly, confusion surrounds any quoted rehabihty number for a product. [Pg.4]


See other pages where Surroundings defined is mentioned: [Pg.686]    [Pg.172]    [Pg.16]    [Pg.113]    [Pg.7]    [Pg.104]    [Pg.16]    [Pg.686]    [Pg.172]    [Pg.16]    [Pg.113]    [Pg.7]    [Pg.104]    [Pg.16]    [Pg.289]    [Pg.210]    [Pg.366]    [Pg.670]    [Pg.345]    [Pg.575]    [Pg.2227]    [Pg.2866]    [Pg.2869]    [Pg.386]    [Pg.701]    [Pg.42]    [Pg.132]    [Pg.366]    [Pg.448]    [Pg.177]    [Pg.331]    [Pg.99]    [Pg.92]    [Pg.172]    [Pg.544]    [Pg.515]    [Pg.129]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Surround

Surrounding

Surroundings

© 2024 chempedia.info