Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface hopping swarm dynamics

Quantum chemical methods, exemplified by CASSCF and other MCSCF methods, have now evolved to an extent where it is possible to routinely treat accurately the excited electronic states of molecules containing a number of atoms. Mixed nuclear dynamics, such as swarm of trajectory based surface hopping or Ehrenfest dynamics, or the Gaussian wavepacket based multiple spawning method, use an approximate representation of the nuclear wavepacket based on classical trajectories. They are thus able to use the infoiination from quantum chemistry calculations required for the propagation of the nuclei in the form of forces. These methods seem able to reproduce, at least qualitatively, the dynamics of non-adiabatic systems. Test calculations have now been run using duect dynamics, and these show that even a small number of trajectories is able to produce useful mechanistic infomiation about the photochemistry of a system. In some cases it is even possible to extract some quantitative information. [Pg.311]

The main practical problem in the implementation of the mixed quantum-classical dynamics method described in Section 4.2.4 is the nonlocal nature of the force in the equation of motion for the stationary-phase trajectories (Equation 4.29). Surface hopping methods provide an approximate, intuitive, stochastic alternative approach that uses the average dynamics of swarm of trajectories over the coupled surfaces to approximate the behavior of the nonlocal stationary-phase trajectory. The siu--face hopping method of Tully and Preston and Tully describes nonadiabatic dynamics even for systems with many particles. Commonly, the nuclei are treated classically, but it is important to consider a large niunber of trajectories in order to sample the quantum probability distribution in the phase space and, if necessary, a statistical distribution over states. In each of the many independent trajectories, the system evolves from the initial configuration for the time necessary for the description of the event of interest. The integration of a trajec-... [Pg.184]


See other pages where Surface hopping swarm dynamics is mentioned: [Pg.184]    [Pg.184]    [Pg.192]   
See also in sourсe #XX -- [ Pg.168 , Pg.184 ]




SEARCH



Hopping dynamics

Hops

Surface hop

Surface hopping

Swarming

Swarms

© 2024 chempedia.info