Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Succinate dehydrogenase in the citric acid cycle

FADH is produced by succinate dehydrogenase in the citric acid cycle and by the a-glycerol phosphate shuttle. Both enzymes are located in the inner membrane and can reoxidize FADHj directly by transferring electrons into the ETC. Once FADH2 has been oxidized, the FAD can be made available once again for use by the enzyme. [Pg.181]

Complex II (succinate dehydrogenase) - Complex II is not in the path traveled by electrons from Complex I (Figure 15.3). Instead, it is a point of entry of electrons from FADH2 produced by the enzyme succinate dehydrogenase in the citric acid cycle. Both complexes I and II donate their electrons to the same acceptor, coenzyme Q. Complex II, like complex I, contains iron-sulfur proteins, which participate in electron transfer. It is also called succinate-coenzyme Q reductase because its electrons reduce coenzyme Q. [Pg.160]

Mercury interferes with mitochondrial oxidation in the brain through mercaptide formation with thiol groups in pyruvate oxidase. Succinic dehydrogenase of the citric acid cycle is also inhibited. [Pg.70]

Figure 6.3. GABA shunt as an alternative to a-ketoglutarate dehydrogenase in the citric acid cycle. 2-Oxoglutarate dehydrogenase, EC 1.2.4.2 glutamate decarboxylase, EC 4.1.1.15 GABA aminotransferase, EC 2.6.1.19 and succinic semialdehyde dehydrogenase, ECl.2.1.16. Figure 6.3. GABA shunt as an alternative to a-ketoglutarate dehydrogenase in the citric acid cycle. 2-Oxoglutarate dehydrogenase, EC 1.2.4.2 glutamate decarboxylase, EC 4.1.1.15 GABA aminotransferase, EC 2.6.1.19 and succinic semialdehyde dehydrogenase, ECl.2.1.16.
As a result of oxidations catalyzed by the dehydrogenases of the citric acid cycle, three molecules of NADH and one of FADHj are produced for each molecule of acetyl-CoA catabohzed in one mrn of the cycle. These reducing equivalents are transferred to the respiratory chain (Figure 16-2), where reoxidation of each NADH results in formation of 3 ATP and reoxidation of FADHj in formation of 2 ATP. In addition, 1 ATP (or GTP) is formed by substrate-level phosphorylation catalyzed by succinate thiokinase. [Pg.133]

Four of the B vitamins are essential in the citric acid cycle and therefore in energy-yielding metabolism (1) riboflavin, in the form of flavin adenine dinucleotide (FAD), a cofactor in the a-ketoglutarate dehydrogenase complex and in succinate dehydrogenase (2) niacin, in the form of nicotinamide adenine dinucleotide (NAD),... [Pg.133]

The citric acid cycle operates in the mitochondria of eukaryotes and in the cytosol of prokaryotes. Succinate dehydrogenase, the only membrane-bound enzyme in the citric acid cycle, is embedded in the inner mitochondrial membrane in eukaryotes and in the plasma membrane in prokaryotes. [Pg.344]

Succinate dehydrogenase catalyzes the so-called trans elimination of two H s. This is the only reaction in the citric acid cycle involving FAD, and succinate dehydrogenase is the only enzyme in the cycle that is membrane-bound. The importance of this will be discussed in Chap. 14. [Pg.348]

There are four major regulatory enzymes in the citric acid cycle. These are citrate synthase (step 1), isocitrate dehydrogenase (step 3), 2-oxoglutarate dehydrogenase (step 4), and succinate dehydrogenase (step 6). [Pg.350]

Recall that FADH i is formed in the citric acid cycle, in the oxidation of sue cinate to fumarate by succinate dehydrogenase (p. 487). This enzyme is of the swccineite-Q reductase complex (Complex 11), an integral membrane protein of the inner mitochondrial membrane. FADH does not leave the complex. Rather, its electrons are transferred to Fe-S centers and then toQ for entry into the electron-transport chain. The succinate-Qreductase complex, in contrast with NADFI-Q oxidoreductase, does not transport protons. Consequently, less ATP is formed from the oxidation of FADH than from NADH. [Pg.512]

The answer is b. (Murray, pp 182-189. Scriver, pp 1521-1552. Sack, pp 121-138. Wilson, pp 287-317.) Reducing equivalents are produced at four sites in the citric acid cycle. NADH is produced by the isocitrate dehydrogenase-catalyzed conversion of a-ketoglutarate to succinyl CoA and by the malate dehydrogenase-catalyzed conversion of malate to oxaloacetate. FADH, is produced by the succinate dehydrogenase-catalyzed conversion of succinate to fumarate. Succinyl CoA synthetase catalyzes the formation of succinate from succinyl CoA, with the concomitant phosphorylation of GDP to GTP... [Pg.166]

Succinate-CoQ Reductase (Complex II) Succinate dehydrogenase, the enzyme that oxidizes a molecule of succinate to fumarate in the citric acid cycle, is an integral component of the succinate-CoQ reductase complex. The two electrons released in conversion of succinate to fumarate are transferred first to FAD, then to an iron-sulfur cluster, and finally to CoQ (see Figure 8-17). The overall reaction catalyzed by this complex is... [Pg.320]

Succinate dehydrogenase, like aconitase, is an iron—sulfur protein. Indeed, succinate dehydrogenase contains three different kinds of iron—sulfur clusters, 2Fe-2S (two iron atoms bonded to two inorganic sulfides), 3Fe-4S, and 4Fe-4S. Succinate dehydrogenase— which consists of two subunits, one 70 kd and the other 27 kd—differs from other enzymes in the citric acid cycle in being embedded in the inner mitochondrial membrane. In fact, succinate dehydrogenase is directly associated with the electron-transport chain, the link between the citric acid cycle and ATP formation. FADH2 produced by the... [Pg.477]

Riboflavin is an important constituent of the flavoproteins.The prosthetic group of these compound proteins contains riboflavin in the form of the phosphate (flavin mononucleotide, FMN) or in a more complex form as flavin adenine dinucleotide (FAD). There are several flavoproteins that function in the animal body they are all concerned with chemical reactions involving the transport of hydrogen. Further details of the importance of flavoproteins in carbohydrate and amino acid metabolism are discussed in Chapter 9. Flavin adenine dinucleotide plays a role in the oxidative phosphorylation system (see Fig. 9.2 on p. 196) and forms the prosthetic group of the enzyme succinic dehydrogenase, which converts succinic acid to fumaric acid in the citric acid cycle. It is also the coenzyme for acyl-CoA dehydrogenase. [Pg.90]

The microbiostatic action of benzoic acid is based on different inhibition mechanisms, mainly many enzymes in the microbial cell are inhibited (Bosund, 1962 Menon et al., 1990). E.g. in yeast, enzymes that control the acetic acid metabolism and oxidative phosphorylation are inhibited. Benzoic acid appears to intervene at various points in the citric acid cycle, especially that of a-ketoglutaric acid and succinic acid dehydrogenase. Besides its enzyme-inactivating effects, benzoic acid also acts on the cell wall. The types of action of benzoic acid are sometimes very similar to those of sorbic acid, although many more data exist for the latter. [Pg.288]

The efficiency of an enzyme can be reduced or can even become negligible in the presence of certain substances, known as inhibitors. Many inhibitors have structural resemblances with the substrates and compete with them for the formation of complexes with the enzyme. This is the case of the inactivation of cytochrome c oxidase by the cyanide ion, which blocks the mitochondrial electron-transport chain to oxygen. Similarly, the inactivation of the succinate dehydrogenase by malonate involves its inhibition of the conversion of succinate to fumarate in the citric acid cycle. In the latter case, the mechanism for competitive inhibition is... [Pg.370]


See other pages where Succinate dehydrogenase in the citric acid cycle is mentioned: [Pg.253]    [Pg.283]    [Pg.743]    [Pg.253]    [Pg.253]    [Pg.283]    [Pg.743]    [Pg.253]    [Pg.66]    [Pg.94]    [Pg.101]    [Pg.623]    [Pg.698]    [Pg.785]    [Pg.443]    [Pg.155]    [Pg.708]    [Pg.725]    [Pg.906]    [Pg.785]    [Pg.488]    [Pg.496]    [Pg.497]    [Pg.509]    [Pg.624]    [Pg.165]    [Pg.184]    [Pg.193]    [Pg.310]    [Pg.623]    [Pg.698]    [Pg.486]    [Pg.296]    [Pg.1140]    [Pg.132]   
See also in sourсe #XX -- [ Pg.344 ]




SEARCH



Citric acid cycle succinate

Citric acid cycle succinate dehydrogenase

Citric cycle

Citric dehydrogenase

Dehydrogenases succinic

In citric acid cycle

Succinate dehydrogenase

Succinate dehydrogenases

Succinate in the citric acid cycle

Succinate/succinic acid

Succinic acid

Succinic acid acidity

Succinic acid dehydrogenase

Succinic dehydrogenase

THE CITRIC ACID CYCLE

The dehydrogenases

© 2024 chempedia.info