Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution reactions base catalyzed

MECHANISM OF NUCLEOPHILIC ACYL SUBSTITUTION Acid-Catalyzed Acyl Substitution Reactions Base-Catalyzed Acyl Substitution Reactions Relative Reactivity of Acyl Derivatives... [Pg.1228]

Quinoline derivatives have been substituted by nucleosides <94JCS(P1)2931> and by ert-butyl groups <95JOC(60)5390> via radical substitution reactions. Palladium-catalyzed cross coupling method has been used to couple quinoline triflates with acetylene <95T(51)3737>. 4-Quinolones, in contrast to 2-quinolones, react with peroxodisulfate anions in aqueous base to form 3-hydroxyquinolines via the 3-sulfate ester <95JCR(S)164>. [Pg.222]

Lapworth found that the substitution reaction is catalyzed by both acids and bases. Since the HX produced as a by-product of the reaction can serve as a catalyst, the acid-catalyzed reaction is said to be autocatalytic because the rate of the reaction increases with time. The rate law for the reaction was found to be first order in ketone but zero order in halogen, meaning that halogen is not... [Pg.442]

The mechanism of the reaction (see Eq. 3.10) is believed to involve initial coordination of the electrophilic carbene to the nitrogen lone pair. The zwitterion thus formed undergoes proton transfer from nitrogen to carbon yielding an N-substituted aminodichloromethane. Base catalyzed beta-elimination of the elements of HQ followed by alpha-elimination of another mole of HCl yields the desired isonitrile. [Pg.50]

The earliest reported reference describing the synthesis of phenylene sulfide stmctures is that of Friedel and Crafts in 1888 (6). The electrophilic reactions studied were based on reactions of benzene and various sulfur sources. These electrophilic substitution reactions were characterized by low yields (50—80%) of rather poorly characterized products by the standards of 1990s. Products contained many by-products, such as thianthrene. Results of self-condensation of thiophenol, catalyzed by aluminum chloride and sulfuric acid (7), were analogous to those of Friedel and Crafts. [Pg.441]

The azo coupling reaction proceeds by the electrophilic aromatic substitution mechanism. In the case of 4-chlorobenzenediazonium compound with l-naphthol-4-sulfonic acid [84-87-7] the reaction is not base-catalyzed, but that with l-naphthol-3-sulfonic acid and 2-naphthol-8-sulfonic acid [92-40-0] is moderately and strongly base-catalyzed, respectively. The different rates of reaction agree with kinetic studies of hydrogen isotope effects in coupling components. The magnitude of the isotope effect increases with increased steric hindrance at the coupler reaction site. The addition of bases, even if pH is not changed, can affect the reaction rate. In polar aprotic media, reaction rate is different with alkyl-ammonium ions. Cationic, anionic, and nonionic surfactants can also influence the reaction rate (27). [Pg.428]

Dioxopiperazines have been converted into the corresponding dihydroxypyrazines by base catalyzed isomerization of the corresponding arylidene derivatives (Scheme 64) (70JCS(C)980), although this reaction appears to be limited to the synthesis of benzyl- or aryl-substituted benzylpyrazines. [Pg.187]

Among the substitution reactions involving the ring nitrogen atoms of the pteridine nucleus, alkylations of amide functions are preeminent. Under base-catalyzed conditions it is usually the nitrogen atom adjacent to the carbonyl function which is substituted... [Pg.304]

Another approach uses the reaction of 6-chloro-5-nitropyrimidines with a-phenyl-substituted amidines followed by base-catalyzed cyclization to pteridine 5-oxides, which can be reduced further by sodium dithionite to the heteroaromatic analogues (equation 97) (79JOC1700). Acylation of 6-amino-5-nitropyrimidines with cyanoacetyl chloride yields 6-(2-cyanoacetamino)-5-nitropyrimidines (276), which can be cyclized by base to 5-hydroxypteridine-6,7-diones (27S) or 6-cyano-7-oxo-7,8-dihydropteridine 5-oxides (277), precursors of pteridine-6,7-diones (278 equation 98) (75CC819). [Pg.316]

Thus the reactions of cyclic or acyclic enamines with acrylic esters or acrylonitrile can be directed to the exclusive formation of monoalkylated ketones (3,294-301). The corresponding enolate anion alkylations lead preferentially to di- or higher-alkylation products. However, by proper choice of reaction conditions, enamines can also be used for the preferential formation of higher alkylation products, if these are desired. Such reactions are valuable in the a substitution of aldehydes, which undergo self-condensation in base-catalyzed reactions (117,118). Monoalkylation products are favored in nonhydroxylic solvents such as benzene or dioxane, whereas dialkylation products can be obtained in hydroxylic solvents such as methanol. The difference in products can be ascribed to the differing fates of an initially formed zwitterionic intermediate. Collapse to a cyclobutane takes place in a nonprotonic solvent, whereas protonation on the newly introduced substitutent and deprotonation of the imonium salt, in alcohol, leads to a new enamine available for further substitution. [Pg.359]

In 1985, in the course of their interest in nitroalkane chemistry, Barton and Zard reported the base-catalyzed reaction of nitroalkenes with a-isocyanoacetates leading to pyrrole esters having an ideal substitution pattern for the synthesis of porphyrins and bile... [Pg.70]

Base-catalyzed epoxide opening is a typical S -2 reaction in which attack of the nucleophile takes place at the less hindered epoxide carbon. For example, 1,2-epoxypropane reacts with ethoxide ion exclusively at the less highly substituted, primary, carbon to give l-ethoxy-2-propanol. [Pg.665]

In this example, the /3-diketone 2-methyJ-l,3-cyclopentanedione is used to generate the enolate ion required for Michael reaction and an aryl-substituted a,/3-unsaturated ketone is used as the acceptor. Base-catalyzed Michael reaction between the two partners yields an intermediate triketone, which then cyclizes in an intramolecular aldol condensation to give a Robinson annulation product. Several further transformations are required to complete the synthesis of estrone. [Pg.899]

The metabolic breakdown of triacylglycerols begins with their hydrolysis to yield glycerol plus fatty acids. The reaction is catalyzed by a lipase, whose mechanism of action is shown in Figure 29.2. The active site of the enzyme contains a catalytic triad of aspartic acid, histidine, and serine residues, which act cooperatively to provide the necessary acid and base catalysis for the individual steps. Hydrolysis is accomplished by two sequential nucleophilic acyl substitution reactions, one that covalently binds an acyl group to the side chain -OH of a serine residue on the enzyme and a second that frees the fatty acid from the enzyme. [Pg.1130]

Cyclization of /V-carbethoxyhydrazone 57 and ALformylhydrazone 58 of pyrrole-2-carbaldehyde gave 59 (73CC35 80JHC631) by base-catalyzed cyclodehydration. The expected substitution product at 6-position was obtained from the reaction of 58 with N-bromosuccinimide (Scheme 15). [Pg.48]

The silicon- and sulfur-substituted 9-allyl-9-borabicyclo[3.3.1]nonane 2 is similarly prepared via the hydroboration of l-phenylthio-l-trimethylsilyl-l,2-propadiene with 9-borabicy-clo[3.3.1]nonane36. The stereochemistry indicated for the allylborane is most likely the result of thermodynamic control, since this reagent should be unstable with respect to reversible 1,3-borotropic shifts. Products of the reactions of 2 and aldehydes are easily converted inlo 2-phenylthio-l,3-butadienes via acid- or base-catalyzed Peterson eliminations. [Pg.271]

Although the reaction of ketones and other carbonyl compounds with electrophiles such as bromine leads to substitution rather than addition, the mechanism of the reaction is closely related to electrophilic additions to alkenes. An enol, enolate, or enolate equivalent derived from the carbonyl compound is the nucleophile, and the electrophilic attack by the halogen is analogous to that on alkenes. The reaction is completed by restoration of the carbonyl bond, rather than by addition of a nucleophile. The acid- and base-catalyzed halogenation of ketones, which is discussed briefly in Section 6.4 of Part A, provide the most-studied examples of the reaction from a mechanistic perspective. [Pg.328]

Silyl enol ethers and silyl ketene acetals also offer both enhanced reactivity and a favorable termination step. Electrophilic attack is followed by desilylation to give an a-substituted carbonyl compound. The carbocations can be generated from tertiary chlorides and a Lewis acid, such as TiCl4. This reaction provides a method for introducing tertiary alkyl groups a to a carbonyl, a transformation that cannot be achieved by base-catalyzed alkylation because of the strong tendency for tertiary halides to undergo elimination. [Pg.863]


See other pages where Substitution reactions base catalyzed is mentioned: [Pg.226]    [Pg.86]    [Pg.2944]    [Pg.86]    [Pg.119]    [Pg.59]    [Pg.218]    [Pg.35]    [Pg.265]    [Pg.292]    [Pg.256]    [Pg.587]    [Pg.346]    [Pg.155]    [Pg.207]    [Pg.107]    [Pg.674]    [Pg.411]    [Pg.224]    [Pg.226]    [Pg.528]    [Pg.603]    [Pg.472]    [Pg.1049]    [Pg.106]    [Pg.123]    [Pg.528]    [Pg.1104]    [Pg.1338]    [Pg.138]    [Pg.346]    [Pg.152]    [Pg.166]   
See also in sourсe #XX -- [ Pg.300 ]

See also in sourсe #XX -- [ Pg.300 ]




SEARCH



Base catalyzed reactions

Bases Base substitution

© 2024 chempedia.info