Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene dimethylsiloxane system

The system with which we have begun our investigations is the styrene-dimethylsiloxane system. The dimethylsiloxane blocks should be considerably less compatible with polystyrene blocks than either polybutadiene or polyisoprene since the solubility parameter of dimethylsiloxane is much farther from that of polystyrene than are the solubility parameters of polybutadienes or of polyisoprenes (17), no matter what their microstructure. Furthermore, even hexamers of polystyrene and of polydimethylsiloxane are immiscible at room temperature and have an upper critical-solution temperature above 35°C (18). In addition, the microphases in this system can be observed without staining and with no ambiguity about the identity of the phases in the transmission electron microscope (TEM) silicon has a much higher atomic number than carbon or oxygen, making the polydimethylsiloxane microphases the dark phases in TEM (19,20). [Pg.210]

Drug Release from PHEMA-l-PIB Networks. Amphiphilic networks due to their distinct microphase separated hydrophobic-hydrophilic domain structure posses potential for biomedical applications. Similar microphase separated materials such as poly(HEMA- -styrene-6-HEMA), poly(HEMA-6-dimethylsiloxane- -HEMA), and poly(HEMA-6-butadiene- -HEMA) triblock copolymers have demonstrated better antithromogenic properties to any of the respective homopolymers (5-S). Amphiphilic networks are speculated to demonstrate better biocompatibility than either PIB or PHEMA because of their hydrophilic-hydrophobic microdomain structure. These unique structures may also be useful as swellable drug delivery matrices for both hydrophilic and lipophilic drugs due to their amphiphilic nature. Preliminary experiments with theophylline as a model for a water soluble drug were conducted to determine the release characteristics of the system. Experiments with lipophilic drugs are the subject of ongoing research. [Pg.210]

For the stabilization of various insoluble hydrocarbon polymers in carbon dioxide, it has been found that no one surfactant works well for all systems. Therefore it has become necessary to tailor the surfactants to the specific polymerization reaction. Through variation of not only the composition of the surfactants, but also their architectures, surfactants have been molecularly-engineered to be surface active—partitioning at the interface between the growing polymer particle and the CO2 continuous phase. The surfactants utilized to date include poly(FOA) homopolymer, poly(dimethylsiloxane) homopolymer with a polymerizable endgroup, poly(styrene-b-FOA), and poly(styrene-b-dimethylsiloxane). Through the utilization of these surfactants, the successful dispersion polymerization of methyl methacrylate (MMA), styrene, and 2,6-dimethylphenol in CO2 has been demonstrated. [Pg.24]

Besides poly(dimethylsiloxane), other elastomeric polymers have been employed in the manufacturing of vaginal rings, such as poly(dimethylsiloxane/vinylmethylsi-loxane), styrene-butadiene-styrene block copolymer, and poly(ethylene-co-vinyl acetate) [123-125], In fact, poly(ethylene-co-vinyl acetate) (commonly referred as EVA) appeared in the mid 1990s as an alternative to poly(dimethylsiloxane), when the manufacturer of this last material stopped supplying it for human use, demonstrating it to be very suitable for the production of controlled-release systems. [Pg.828]

Cho et al. (2000) studied the segregation dynamics of block copolymers to the interface of an immiscible polymer blend and compared experimental results to the predictions of various theories for a poly(styrene-b-dimethylsiloxane) [P(S-b-DMS) M = 13,000] symmetric diblock copolymer system added to a molten blend of the corresponding immiscible homopolymers. They used the pendant drop technique at intermediate times and compared their results to the predictions of diffusion-limited segregation models proposed by Budkowski, Losch, and Klein (BLK) and by Semenov that have been modified to treat interfacial tension data. The apparent block copolymer diffusion coefficients obtained from the two analyses fall in the range of 10 -10 cm /s, in agreement with the estimated self-diffusion coefficient of the PDMS homopolymer matrix. [Pg.464]


See other pages where Styrene dimethylsiloxane system is mentioned: [Pg.29]    [Pg.364]    [Pg.27]    [Pg.186]    [Pg.664]    [Pg.147]    [Pg.24]    [Pg.57]    [Pg.359]    [Pg.57]    [Pg.362]    [Pg.465]    [Pg.359]   
See also in sourсe #XX -- [ Pg.209 , Pg.214 ]




SEARCH



Dimethylsiloxane

Dimethylsiloxanes

Styrene systems

© 2024 chempedia.info