Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure antiferroelectric

Fig. 14. A snapshot of a configuration showing the stripe-like structure of the smectic phase formed hy the polar mesogen GB(3.0, 5.0, 1, 3) and the antiferroelectric compensation in adjacent layers. The different orientations of the dipoles are indicated hy the different shading of the ellipsoids... Fig. 14. A snapshot of a configuration showing the stripe-like structure of the smectic phase formed hy the polar mesogen GB(3.0, 5.0, 1, 3) and the antiferroelectric compensation in adjacent layers. The different orientations of the dipoles are indicated hy the different shading of the ellipsoids...
In this section, we will present the crystal structures of chiral mesogenic compounds exhibiting ferroelectric liquid crystalline phases which are listed in Table 18 [152-166]. Moreover, four compounds of the list show antiferroelectric properties and two compounds form only orthogonal smectic phases. The general chemical structures of the investigated chiral compounds are shown in Fig. 27. [Pg.184]

Zareba et al. [165] described the crystal structure of the chiral 4-(l-methyl-heptyloxycarbonyl)-phenyl 4-heptyloxytolane-4 -carboxylate (C7-tolane) which shows monotropic antiferroelectric and ferroelectric phases. The single-crystal X-ray analysis of this compound shows that the crystal has a smectic-like layer structure composed of largely bent molecules where the chain of the chiral group is almost perpendicular (86°) to the core moiety. Within the layers, the molecules are tilted. The central tolane group of the molecule is roughly planar. [Pg.189]

Table 18) must show a bent structure. This may be one reason for the interlocking and the occurrence of the 21-axis and the antiferroelectricity. But bent structures are possible as well as by gauche conformations like in the described solid state of compound 4-[(S)-2-methylheptyloxy]phenyl 4 -oct-ylbiphenyl-4-carboxylate [153]. [Pg.190]

We note that the bilayer smectic phase which may be formed in main-chain polymers with two odd numbered spacers of different length (Fig. 7), should also be polar even in an achiral system [68]. This bilayer structure belongs to the same polar symmetry group mm2 as the chevron structure depicted in Fig. 17b, and macroscopic polarization might exist in the tilt direction of molecules in the layer. From this point of view, the formation of two-dimensional structure of the type shown in Fig. 7, where the polarization directions in neighbouring areas have opposite signs, is a unique example of a two dimensional antiferroelectric structure. [Pg.232]

Fig. 17a-c. Sketches of the molecular arrangements for the smectic structure with alternating layer-to-layer tilt a conventional and chevron smectic C layering in low molecular mass mesogens b ferroelectric hilayer chevron structures for achiral side-chain polymers c antiferroelectric hilayer chevron structures for achiral side-chain polymers. Arrows indicate the macroscopic polarization in the direction of the molecular tilt... [Pg.233]

The v2 bending vibration is a quartet or, in a simplified picture, two Davydov doublets as a consequence of a site-symmetry-induced doublet (see Fig. 2.6).40 A system of particular interest is CO/NaCl(100) it is characterized by inclined molecular orientations with =25° and antiferroelectric ordering of chains at low temperatures (see Fig. 2.7) which is removed on the phase transition at T 25 K. This structural information is deduced from the observed Davydov splitting of the spectral line for the CO stretching vibrations at 2155 cm 1 and T<24 K (see Fig. [Pg.9]

Since P must remain normal to z and n, the polarization vector forms a helix, where P is everywhere normal to the helix axis. While locally a macroscopic dipole is present, globally this polarization averages to zero due to the presence of the SmC helix. Such a structure is sometimes termed a helical antiferroelectric. But, even with a helix of infinite pitch (i.e., no helix), which can happen in the SmC phase, bulk samples of SmC material still are not ferroelectric. A ferroelectric material must possess at least two degenerate states, or orientations of the polarization, which exist in distinct free-energy wells, and which can be interconverted by application of an electric field. In the case of a bulk SmC material with infinite pitch, all orientations of the director on the tilt cone are degenerate. In this case the polarization would simply line up parallel to an applied field oriented along any axis in the smectic layer plane, with no wells or barriers (and no hysteresis) associated with the reorientation of the polarization. While interesting, such behavior is not that of a true ferroelectric. [Pg.468]

Along with the prediction and discovery of a macroscopic dipole in the SmC phase and the invention of ferroelectric liquid crystals in the SSFLC system, the discovery of antiferroelectric liquid crystals stands as a key milestone in chiral smectic LC science. Antiferroelectric switching (see below) was first reported for unichiral 4-[(l-methylheptyloxy)carbonyl]phenyl-4/-octyloxy-4-biphenyl carboxylate [MHPOBC, (3)],16 with structure and phase sequence... [Pg.470]

Figure 8.8 Structure and phase sequence of (R)-MHPOBC is shown. One of most famous smectic LCs, antiferroelectric switching in SSFLC cells was first discovered with this material. Figure 8.8 Structure and phase sequence of (R)-MHPOBC is shown. One of most famous smectic LCs, antiferroelectric switching in SSFLC cells was first discovered with this material.
Figure 8.12 Longitudinal sheets with antiparallel polar symmetry are illustrated for achiral SmCA and SmC phases. Since it is not possible to switch to ferroelectric state in such system upon application of electric field, these structure should not be considered antiferroelectric. Figure 8.12 Longitudinal sheets with antiparallel polar symmetry are illustrated for achiral SmCA and SmC phases. Since it is not possible to switch to ferroelectric state in such system upon application of electric field, these structure should not be considered antiferroelectric.
It is now instructive to ask why the achiral calamitic SmC a (or SmC) is not antiferroelectric. Cladis and Brand propose a possible ferroelectric state of such a phase in which the tails on both sides of the core tilt in the same direction, with the cores along the layer normal. Empirically this type of conformational ferroelectric minimum on the free-energy hypersurface does not exist in known calamitic LCs. Another type of ferroelectric structure deriving from the SmCA is indicated in Figure 8.13. Suppose the calamitic molecules in the phase were able to bend in the middle to a collective free-energy minimum structure with C2v symmetry. In this ferroelectric state the polar axis is in the plane of the page. [Pg.479]

Figure 8.13 Hypothetical smectic mesogen with hinge in center of core is illustrated. Such material could in principal switch to ferroelectric state, which we term the SmAPp, upon application of electric field in plane of layers. If this state exists in well on configurational hypersurface, then ground-state structure is antiferroelectric, denoted SmAPA. Figure 8.13 Hypothetical smectic mesogen with hinge in center of core is illustrated. Such material could in principal switch to ferroelectric state, which we term the SmAPp, upon application of electric field in plane of layers. If this state exists in well on configurational hypersurface, then ground-state structure is antiferroelectric, denoted SmAPA.
By our definition, the tilt plane is normal to the polarization in the ferroelectric state in the illustration in Figure 8.13 this is a vertical plane normal to the plane of the page. Since there is no tilt of the director projected onto this plane, the phase should be considered a type of SmA. We name this structure SmAPp (an untilted polar smectic the subscript F referring to a ferroelectric structure, in this case a ferroelectric state of an antiferroelectric phase). The antiferroelectric phase is therefore also an SmA denoted SmAPA (the subscript A for antiferroelectric). While this idea is certainly intriguing, no such antiferroelectric has yet been discovered. [Pg.480]

Figure 8.15 Structure and phase sequence of two components of the Soto Bustamante-Blinov achiral antiferroelectric are given. Figure 8.15 Structure and phase sequence of two components of the Soto Bustamante-Blinov achiral antiferroelectric are given.
Using this method, the M6R8/PM6R8 blend showed precisely the behavior expected for the achiral SmAPA structure. Specifically, the optical properties of the films were consistent with a biaxial smectic structure (i.e., two different refractive indices in the layer plane). The thickness of the films was quantized in units of one bilayer. Upon application of an electric field, it was seen that films with an even number of bilayers behaved in a nonpolar way, while films with an odd number of bilayers responded strongly to the field, showing that they must possess net spontaneous polarization. Note that the electric fields in this experiment are not strong enough to switch an antiferroelectric to a ferroelectric state. Reorientation of the polarization field (and director structure) of the polar film in the presence of a field can easily be seen, however. [Pg.482]

Figure 8.17 Structure and phase sequence of first banana-phase mesogen, reported by Vorlander in 1929, is given. Liquid crystal phase exhibited by this material (actually Vorlander s original sample) was shown by Pelzl et al.36a to have B6 stmeture, illustrated on right, in 2001. Achiral B6 phase does not switch in response to applied fields in way that can be said to be either ferroelectric or antiferroelectric. Figure 8.17 Structure and phase sequence of first banana-phase mesogen, reported by Vorlander in 1929, is given. Liquid crystal phase exhibited by this material (actually Vorlander s original sample) was shown by Pelzl et al.36a to have B6 stmeture, illustrated on right, in 2001. Achiral B6 phase does not switch in response to applied fields in way that can be said to be either ferroelectric or antiferroelectric.
Figure 8.18 Smectic dimer of Watanabe, possessing an odd number of methylene units in linking group. This material self-assembles into intercalated smectic structure very similar to B6 banana phase. As for B6 phase, this achiral phase is also neither ferroelectric nor antiferroelectric. Figure 8.18 Smectic dimer of Watanabe, possessing an odd number of methylene units in linking group. This material self-assembles into intercalated smectic structure very similar to B6 banana phase. As for B6 phase, this achiral phase is also neither ferroelectric nor antiferroelectric.
This proposal has the B2 phase being a SmAPF structure with a helix, as shown in Figure 8.20, and first proposed by Brand et al.29 Such a system could show antiferroelectric polarization reversal current behavior due to the expected barrier for unwinding and reforming of the helix. If the frequency of the applied AC field is faster than is required to allow the helix to reform, then in principle an antiferroelectric polarization reversal behavior could be observed. [Pg.493]

It is interesting to point out here that with all of the theoretical speculation in the literature about polar order (both ferroelectric and antiferroelectric) in bilayer chevron smectics, and about reflection symmetry breaking by formation of a helical structure in a smectic with anticlinic layer interfaces, the first actual LC structure proven to exhibit spontaneous reflection symmetry breaking, the SmCP structure, was never, to our knowledge, suggested prior to its discovery. [Pg.496]

The layer stacking is synclinic in the tilt plane and antiferroelectric in the polar plane. The phase composed of an infinite number of SmCP layers stacked in this way is termed SmCsP, where the subscripts S and A each refer a structural feature of the layer interfaces between adjacent pairs of layers. If two adjacent layers are tilted in the same direction, the interface is synclinic (subscript S) in the tilt plane. If two adjacent layers have antiparallel orientation of their polar axes, then the layer interface is said to be antiferroelectric (A) in the polar plane. [Pg.497]

Apparently this switching mode is disfavored since, in fact, the chirality of the layers does not change upon switching to the ferroelectric state rather the layer interface clinicity changes. This occurs when the molecules in alternate layers simply precess about the tilt cone in a manner exactly analogous to antiferroelectric to ferroelectric switching in the chiral SmC phase. As shown in Figure 8.25, the ferroelectric state obtained from the ShiCsPa antiferroelectric phase is a ShiCaPf structure, an achiral macroscopic racemate with anticlinic layer interfaces. [Pg.499]

A simple consideration of the synclinic banana phases in the context of the prior discovery of the Soto Bustamante-Blinov achiral antiferroelectric bilayer is illuminating. In Figure 8.28, the achiral antiferroelectric SmAPA bilayer structure is illustrated on the left. The layers are horizontal and normal to the plane of the page, and the tilt plane is vertical and normal to the plane... [Pg.502]


See other pages where Structure antiferroelectric is mentioned: [Pg.653]    [Pg.775]    [Pg.653]    [Pg.775]    [Pg.58]    [Pg.386]    [Pg.188]    [Pg.189]    [Pg.216]    [Pg.226]    [Pg.231]    [Pg.232]    [Pg.396]    [Pg.472]    [Pg.474]    [Pg.478]    [Pg.478]    [Pg.481]    [Pg.483]    [Pg.493]    [Pg.496]    [Pg.497]    [Pg.498]    [Pg.500]    [Pg.501]    [Pg.502]    [Pg.502]    [Pg.504]    [Pg.514]   
See also in sourсe #XX -- [ Pg.62 , Pg.87 , Pg.162 ]




SEARCH



Antiferroelectric liquid crystal structure

Antiferroelectricity

© 2024 chempedia.info