Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Step polymerization reactivity

More recent studies, particularly with slower hafnium complexes, have provided more detailed mechanistic insight As a step polymerization, the reaction is "nonideal" in that inequivalent reactivities for different Si-H functional groups in the system are observed. For exaniple, disilanes tend to be more reactive than monosilanes. Beyond disilane formation, the preferred dehydrocoupling reaction appears to involve addition of one silicon at a time to the growing chain, via M-S1H2R intermediates (n = 1 above). The Si-Si bond-forming reactions are also reversible. [Pg.226]

Chemical vapor deposition (CVD) is a process whereby a thin solid film is synthesized from the gaseous phase by a chemical reaction. It is this reactive process that distinguishes CVD from physical deposition processes, such as evaporation, sputtering, and sublimation.8 This process is well known and is used to generate inorganic thin films of high purity and quality as well as form polyimides by a step-polymerization process.9-11 Vapor deposition polymerization (VDP) is the method in which the chemical reaction in question is the polymerization of a reactive species generated in the gas phase by thermal (or radiative) activation. [Pg.277]

Recent work on the synthesis, structure and some properties of macromolecules bearing furan rings is discussed. Two basic sources of monomers are considered, viz. furfural for monomers apt to undergo chain polymerization and hydroxymethylfurfural for monomers suitable for step polymerization.Within the first context, free radical, catiomc and anionic systems are reviewed and the peculiarities arising from the presence of furan moieties in the monomer and/or the polymer examined in detail. As for the second context, the polymers considered are polyesters, polyethers, polyamides and polyurethanes. Finally, the chemical modification of aU these oligomers, polymers and copolymers is envisaged on the basis of the unique reactivity of the furan heterocycle. [Pg.195]

Kinetic analysis of a step polymerization becomes complicated when all functional groups in a reactant do not have the same reactivity. Consider the polymerization of A—A with B—B where the reactivities of the two functional groups in the B—B reactant are initially of different reactivities and, further, the reactivities of B and B each change on reaction of the other group. Even if the reactivities of the two functional groups in the A—A reactant are the same and independent of whether either group has reacted, the polymerization still involves four different rate constants. Any specific-sized polymer species larger than dimer is formed by two simultaneous routes. For example, the trimer A—AB—B A—A is formed by... [Pg.57]

In order to properly control the polymer molecular weight, one must precisely adjust the stoichiometric imbalance of the bifunctional monomers or of the monofunctional monomer. If the nonstoichiometry is too large, the polymer molecular weight will be too low. It is therefore important to understand the quantitative effect of the stoichiometric imbalance of reactants on the molecular weight. This is also necessary in order to know the quantitative effect of any reactive impurities that may be present in the reaction mixture either initially or that are formed by undesirable side reactions. Impurities with A or B functional groups may drastically lower the polymer molecular weight unless one can quantitatively take their presence into account. Consider now the various different reactant systems which are employed in step polymerizations ... [Pg.75]

The product of a polymerization is a mixture of polymer molecules of different molecular weights. For theoretical and practical reasons it is of interest to discuss the distribution of molecular weights in a polymerization. The molecular weight distribution (MWD) has been derived by Flory by a statistical approach based on the concept of equal reactivity of functional groups [Flory, 1953 Howard, 1961 Peebles, 1971]. The derivation that follows is essentially that of Flory and applies equally to A—B and stoichiometric A—A plus B—B types of step polymerizations. [Pg.80]

It is highly unlikely that the reactivities of the various monomers would be such as to yield either block or alternating copolymes. The quantitative dependence of copolymer composition on monomer reactivities has been described [Korshak et al., 1976 Mackey et al., 1978 Russell et al., 1981]. The treatment is the same as that described in Chap. 6 for chain copolymerization (Secs. 6-2 and 6-5). The overall composition of the copolymer obtained in a step polymerization will almost always be the same as the composition of the monomer mixture since these reactions are carried out to essentially 100% conversion (a necessity for obtaining high-molecular-weight polymer). Further, for step copolymerizations of monomer mixtures such as in Eq. 2-192 one often observes the formation of random copolymers. This occurs either because there are no differences in the reactivities of the various monomers or the polymerization proceeds under reaction conditions where there is extensive interchange (Sec. 2-7c). The use of only one diacid or one diamine would produce a variation on the copolymer structure with either R = R" or R = R " [Jackson and Morris, 1988]. [Pg.138]

In the previous chapter, the synthesis of polymers by step polymerization was considered. Polymerization of unsaturated monomers hy chain polymerization will be discussed in this and several of the subsequent chapters. Chain polymerization is initiated hy a reactive species R produced from some compound I termed an initiator. [Pg.198]

Kricheldorf and coworkers have found that some heterocyclic compounds containing two reactive bonds behave as bifunctional reactants in a ROP that proceeds by a step polymerization mechanism [Kricheldorf, 2000]. An example is the polymerization of 2,2-dibutyl-2-stanna-l,3-dioxepane with an aliphatic diacid chloride ... [Pg.594]

The possibility of synthesizing a polymer network containing chemical (topological) clusters by using three monomers of different sizes during a step polymerization was described. In the absence of thermodynamic effects, cluster formation is fully controlled by the initial composition of the system, the relative reactivities of functional groups, and the network-formation history (Nabeth et al, 1996 Cuney et al., 1997). [Pg.234]

Fig. 13.42 Simulation results of the RIM process involving a linear step polymerization T0 = Tw = 60°C, kf— 0.5L/moles, t(lii = 2.4 s. (a) Conversion contours at the time of fill, (h) Temperature contours at the time of fill. [Reprinted hy permission from J. D. Domine and C. G. Gogos, Computer Simulations of Injection Molding of a Reactive Linear Condensation Polymer, paper presented at the Society of Plastics Engineers, 34th Armu. Tech. Conf, Atlantic City, NJ, 1976. (Also published in the Polym. Eng. Sci., 20, 847-858 (1980) volume honoring Prof. B. Maxwell).]... Fig. 13.42 Simulation results of the RIM process involving a linear step polymerization T0 = Tw = 60°C, kf— 0.5L/moles, t(lii = 2.4 s. (a) Conversion contours at the time of fill, (h) Temperature contours at the time of fill. [Reprinted hy permission from J. D. Domine and C. G. Gogos, Computer Simulations of Injection Molding of a Reactive Linear Condensation Polymer, paper presented at the Society of Plastics Engineers, 34th Armu. Tech. Conf, Atlantic City, NJ, 1976. (Also published in the Polym. Eng. Sci., 20, 847-858 (1980) volume honoring Prof. B. Maxwell).]...
Because of the one-step polymerization procedure, hyperbranched polymers often contain not only D and T but also L repeating units. This can be expressed by DB, which is an important structural parameter of hyperbranched polymers. DB is estimated as the sum of the D and T units divided by the sum of all the three structural units, that is, D, T and L [41]. By definition, a linear polymer has no dendritic units and its DB is zero, while a perfect dendrimer has no linear units and its DB is thus unity. Frey has pointed out that DB statistically approaches 0.5 in the case of polymerization of AB2 monomers, provided that all the functional groups possess the same reactivity [42]. The structures of the hb-PYs could be analyzed by spectroscopic methods such as NMR and FTIR. The DB value of the phosphorous-containing polymer hb-F21, for example, was estimated to be 53% from its 31P NMR chemical shifts (Chart 1). [Pg.11]

In contrast to step polymerizations, chain polymerizations require an initiator (I) to produce reactive centers. Because monomer (M) reacts exclusively with the active center (M ) and not with another monomer molecule, the polymerization rate is usually first order in monomer. In addition to initiation and propagation, chain polymerizations may also undergo transfer and termination reactions (e.g., with reagent A) in which inactive chains (P) are formed [Eq. (3)]. [Pg.5]

Step polymerization requires that there is at least a reactive functional group on each end of the monomer that will react with functional groups with other monomers. For example, amino-caproic acid... [Pg.195]

Step polymerization occurs by successive reactions between functional groups of reactants. A typical example is the synthesis of a polyester, where each of the two reactants possesses two reactive end groups (difunctional monomers) ... [Pg.8]

Other step-polymerization reactions important in reactive processing... [Pg.31]


See other pages where Step polymerization reactivity is mentioned: [Pg.236]    [Pg.186]    [Pg.6]    [Pg.27]    [Pg.31]    [Pg.76]    [Pg.97]    [Pg.41]    [Pg.43]    [Pg.44]    [Pg.50]    [Pg.62]    [Pg.144]    [Pg.199]    [Pg.206]    [Pg.521]    [Pg.586]    [Pg.236]    [Pg.229]    [Pg.362]    [Pg.265]    [Pg.2]    [Pg.466]    [Pg.167]    [Pg.91]    [Pg.4]    [Pg.666]    [Pg.10]    [Pg.2687]    [Pg.23]    [Pg.7]   
See also in sourсe #XX -- [ Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 ]

See also in sourсe #XX -- [ Pg.54 , Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 ]




SEARCH



Step polymerization

Step polymerization functional group reactivity

© 2024 chempedia.info