Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Step polymerization dendrimer

Alternatively, the one-step polymerization of branched monomers results in what is called a hyperbranched polymer [53] possessing a higher degree of polydispersity and lower degree of branching compared to the analogous dendrimer. [Pg.35]

Beginn developed Percec-type dendrimers, which are known to form supramolecu-lar channels, with polymerizable acrylate groups in order to obtain ion-permeable membranes [97-99]. First, the dendron 78 (Scheme 40) was dissolved in a polymerizable acrylate mixture that does not shrink on polymerization. The second step was the thermo-reversible gelation of the acrylate mixture, which was followed by the last step, polymerization to fix the supramolecular channel structure (Scheme 40). In the first experiments, compounds with only one polymerizable group were used but it turned out that the gelating properties were not sufficient [100, 101] so threefold modified 78 had to be developed. [Pg.153]

Hyper-branched polymers are prepared in a single-step polymerization from ABX monomers. Thus, a perfectly branched structure is present in dendrimers, whereas irregular branching is present in hyper-branched polymers. Aluminum alkoxide-based initiators or tin-based catalysts have been successfully used for the preparation of, hyper-branched [160-162, 166-168], dendrimer-like star polymers [160], and star-shaped polymers. The first and second generations of the benzyl ester of 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) are effective initiators for the ROP of lactones (e-CL) in the presence of Sn(Oct)2. The... [Pg.25]

Because of the one-step polymerization procedure, hyperbranched polymers often contain not only D and T but also L repeating units. This can be expressed by DB, which is an important structural parameter of hyperbranched polymers. DB is estimated as the sum of the D and T units divided by the sum of all the three structural units, that is, D, T and L [41]. By definition, a linear polymer has no dendritic units and its DB is zero, while a perfect dendrimer has no linear units and its DB is thus unity. Frey has pointed out that DB statistically approaches 0.5 in the case of polymerization of AB2 monomers, provided that all the functional groups possess the same reactivity [42]. The structures of the hb-PYs could be analyzed by spectroscopic methods such as NMR and FTIR. The DB value of the phosphorous-containing polymer hb-F21, for example, was estimated to be 53% from its 31P NMR chemical shifts (Chart 1). [Pg.11]

Similar behavior has been observed by Wooley in their comparison of the same dendrimers with linear analogs prepared by die one-step polymerization of 3-hydroxy-... [Pg.114]

Monomers of die type Aa B. are used in step-growth polymerization to produce a variety of polymer architectures, including stars, dendrimers, and hyperbranched polymers.26 28 The unique architecture imparts properties distinctly different from linear polymers of similar compositions. These materials are finding applications in areas such as resin modification, micelles and encapsulation, liquid crystals, pharmaceuticals, catalysis, electroluminescent devices, and analytical chemistry. [Pg.8]

Dendrimers produced by divergent or convergent methods are nearly perfectly branched with great structural precision. However, the multistep synthesis of dendrimers can be expensive and time consuming. The treelike structure of dendrimers can be approached through a one-step synthetic methodology.31 The step-growth polymerization of ABx-type monomers, particularly AB2, results in a randomly branched macromolecule referred to as hyperbranch polymers. [Pg.8]

The molecular characterization of a polymeric material is a crucial step in elucidating the relationship between its properties (e.g., mechanical, thermal), its chemical structure, and its morphology. As a matter of fact, the development of a new product stems invariably from a good knowledge of the above relationships. Characterization of polymers is often a difficult task because polymers display a variety of architectures, including linear, cyclic, and branched chains, dendrimers, and star polymers with different numbers of arms. [Pg.299]

Hyperbranched polymers are formed by polymerization of AB,-monomers as first theoretically discussed by Flory. A wide variety of hyperbranched polymer structures such as aromatic polyethers and polyesters, aliphatic polyesters. polyphenylenes, and aromatic polyamides have been described in the literature. The structure of hyperbranched polymers allows some defects, i.e. the degree of branching (DB) is less than one. The synthesis of hyperbranched polymers can often be simplified compared to the one of dendrimers since it is not necessary to use protection/deprotection steps. The most common synthetic route follows a one-pot procedure " where AB,-monomers are condensated in the presence of a catalyst. Another method using a core molecule and an AB,-monomer has been described. ... [Pg.4]


See other pages where Step polymerization dendrimer is mentioned: [Pg.202]    [Pg.144]    [Pg.98]    [Pg.246]    [Pg.43]    [Pg.33]    [Pg.67]    [Pg.134]    [Pg.191]    [Pg.32]    [Pg.2]    [Pg.176]    [Pg.199]    [Pg.253]    [Pg.288]    [Pg.346]    [Pg.465]    [Pg.18]    [Pg.82]    [Pg.95]    [Pg.680]    [Pg.153]    [Pg.11]    [Pg.203]    [Pg.6]    [Pg.257]    [Pg.103]    [Pg.892]    [Pg.182]    [Pg.344]    [Pg.1293]    [Pg.308]    [Pg.115]    [Pg.469]    [Pg.1]    [Pg.46]    [Pg.862]    [Pg.177]    [Pg.419]   
See also in sourсe #XX -- [ Pg.177 , Pg.178 , Pg.179 ]

See also in sourсe #XX -- [ Pg.177 , Pg.178 , Pg.179 ]




SEARCH



Polymeric dendrimers

Step polymerization

© 2024 chempedia.info