Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Statistical theories phase space

The tetrafluoromethane ion has also been found to decay before electronic randomisation has occurred [129, 769] (see Sect. 5.3 and 5.9 for other perfluorinated molecules). The breakdown diagrams for CF3X molecules (X = a halogen atom other than F) have been reported [690]. Translational energy release distributions have also been measured for these molecules and shown to be in agreement with the predictions of statistical theory (phase space theory) [691]. Carbonyl chloride and fluoride have been studied [451] (see Sect. 8). [Pg.97]

The development of quantum theory, particularly of quantum mechanics, forced certain changes in statistical mechanics. In the development of the resulting quantum statistics, the phase space is divided into cells of volume hf. where h is the Planck constant and / is the number of degrees of freedom. In considering the permutations of the molecules, it is recognized that the interchange of two identical particles does not lead to a new state. With these two new ideas, one arrives at the Bose-Einstein statistics. These statistics must be further modified for particles, such as electrons, to which the Pauli exclusion principle applies, and the Fermi-Dirac statistics follow. [Pg.1539]

The determination of the microcanonical rate coefficient k E) is the subject of active research. A number of techniques have been proposed, and include RRKM theory (discussed in more detail in Section 2.4.4) and the derivatives of this such as Flexible Transition State theory. Phase Space Theory and the Statistical Adiabatic Channel Model. All of these techniques require a detailed knowledge of the potential energy surface (PES) on which the reaction takes place, which for most reactions is not known. As a consequence much effort has been devoted to more approximate techniques which depend only on specific PES features such as reaction threshold energies. These techniques often have a number of parameters whose values are determined by calibration with experimental data. Thus the analysis of the experimental data then becomes an exercise in the optimization of these parameters so as to reproduce the experimental data as closely as possible. One such technique is based on Inverse Laplace Transforms (ILT). [Pg.166]

During the past few years we have observed an intensive development of many-channel approaches to the collision problem. In particular, the coupled-channels method is based on an expansion of the total wave fmiction in internal states of reactants and products and a numerical solution of the coupled-channels equations.This method was applied in the usual way to the atom-diatom reaction A + BC by MOR-TENSBN and GUCWA /86/, MILLER /102/, WOLKEN and KARPLUS /103/, and EL-KOWITZ and WYATT /101b/. Operator techniques based on the Lippmann-Schwinger equation (46.II) or on the transition operator (38 II) has also been used, for instance, by BAER and KIJORI /104/ The effective Hamiltonian approach( opacity and optical-potential models) and the statistical approach (phase space models, transition state models, information theory) provide other relatively simple ways for a solution of the collision problem in the framework of the many-channel method /89/<. [Pg.88]

Cao, J., Voth, G.A. The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties. J. Chem. Phys. 100 (1994) 5093-5105 II Dynamical properties. J. Chem. Phys. 100 (1994) 5106-5117 III. Phase space formalism and nalysis of centroid molecular dynamics. J. Chem. Phys. 101 (1994) 6157-6167 IV. Algorithms for centroid molecular dynamics. J. Chem. Phys. 101 (1994) 6168-6183 V. Quantum instantaneous normal mode theory of liquids. J. Chem. Phys. 101 (1994) 6184 6192. [Pg.34]

The present theory can be placed in some sort of perspective by dividing the nonequilibrium field into thermodynamics and statistical mechanics. As will become clearer later, the division between the two is fuzzy, but for the present purposes nonequilibrium thermodynamics will be considered that phenomenological theory that takes the existence of the transport coefficients and laws as axiomatic. Nonequilibrium statistical mechanics will be taken to be that field that deals with molecular-level (i.e., phase space) quantities such as probabilities and time correlation functions. The probability, fluctuations, and evolution of macrostates belong to the overlap of the two fields. [Pg.4]

The aim of this section is to give the steady-state probability distribution in phase space. This then provides a basis for nonequilibrium statistical mechanics, just as the Boltzmann distribution is the basis for equilibrium statistical mechanics. The connection with the preceding theory for nonequilibrium thermodynamics will also be given. [Pg.39]

A theory for nonequilibrium quantum statistical mechanics can be developed using a time-dependent, Hermitian, Hamiltonian operator Hit). In the quantum case it is the wave functions [/ that are the microstates analogous to a point in phase space. The complex conjugate / plays the role of the conjugate point in phase space, since, according to Schrodinger, it has equal and opposite time derivative to v /. [Pg.57]

For nonequilibrium statistical mechanics, the present development of a phase space probability distribution that properly accounts for exchange with a reservoir, thermal or otherwise, is a significant advance. In the linear limit the probability distribution yielded the Green-Kubo theory. From the computational point of view, the nonequilibrium phase space probability distribution provided the basis for the first nonequilibrium Monte Carlo algorithm, and this proved to be not just feasible but actually efficient. Monte Carlo procedures are inherently more mathematically flexible than molecular dynamics, and the development of such a nonequilibrium algorithm opens up many, previously intractable, systems for study. The transition probabilities that form part of the theory likewise include the influence of the reservoir, and they should provide a fecund basis for future theoretical research. The application of the theory to molecular-level problems answers one of the two questions posed in the first paragraph of this conclusion the nonequilibrium Second Law does indeed provide a quantitative basis for the detailed analysis of nonequilibrium problems. [Pg.83]

The plan of this chapter is the following. Section II gives a summary of the phenomenology of irreversible processes and set up the stage for the results of nonequilibrium statistical mechanics to follow. In Section III, it is explained that time asymmetry is compatible with microreversibility. In Section IV, the concept of Pollicott-Ruelle resonance is presented and shown to break the time-reversal symmetry in the statistical description of the time evolution of nonequilibrium relaxation toward the state of thermodynamic equilibrium. This concept is applied in Section V to the construction of the hydrodynamic modes of diffusion at the microscopic level of description in the phase space of Newton s equations. This framework allows us to derive ab initio entropy production as shown in Section VI. In Section VII, the concept of Pollicott-Ruelle resonance is also used to obtain the different transport coefficients, as well as the rates of various kinetic processes in the framework of the escape-rate theory. The time asymmetry in the dynamical randomness of nonequilibrium systems and the fluctuation theorem for the currents are presented in Section VIII. Conclusions and perspectives in biology are discussed in Section IX. [Pg.85]

Phase space theory (PST) has been widely used for estimation of rates and energy partitioning for ion dissociations. It can be considered within the framework of transition-state theory as the limiting case of a loose transition state, in which all product degrees of freedom are statistically fully accessible at the transition state. As such, it is expected to give an upper limit for dissociation rates and to be best suited to barrierless dissociations involving reaction coordinates with simple bond cleavage character. [Pg.117]

The maximum entropy method (MEM) is an information-theory-based technique that was first developed in the field of radioastronomy to enhance the information obtained from noisy data (Gull and Daniell 1978). The theory is based on the same equations that are the foundation of statistical thermodynamics. Both the statistical entropy and the information entropy deal with the most probable distribution. In the case of statistical thermodynamics, this is the distribution of the particles over position and momentum space ( phase space ), while in the case of information theory, the distribution of numerical quantities over the ensemble of pixels is considered. [Pg.115]

In 1965, Joseph E. Mayer (Sidebar 13.5) and co-workers published a paper [M. Baur, J. R. Jordan, P. C. Jordan, and J. E. Mayer. Towards a Theory of Linear Nonequilibrium Statistical Mechanics. Ann. Phys. (NY) 65, 96-163 (1965)] in which the vectorial character of the thermodynamic formalism was suggested from a statistical mechanical origin. Although this paper attracted little attention at the time, its results suggest how thermodynamic geometry might be traced to the statistics of quantum mechanical phase-space distributions. [Pg.442]

Figure 3. Thermal rate constants for capture of HC1 by H3 (PST locked-dipole capture corresponding to phase-space theory, Eq. (16) SACM statistical adiabatic channel model, Eqs. (26)-(34) [15] SACMci classical SACM, Eqs. (28H31) [15] CT classical trajectories, Eqs. (26) and (27) [1]). Figure 3. Thermal rate constants for capture of HC1 by H3 (PST locked-dipole capture corresponding to phase-space theory, Eq. (16) SACM statistical adiabatic channel model, Eqs. (26)-(34) [15] SACMci classical SACM, Eqs. (28H31) [15] CT classical trajectories, Eqs. (26) and (27) [1]).
Statistical phase-space theory Statistical phase-space theory Statistical phase-space theory... [Pg.197]


See other pages where Statistical theories phase space is mentioned: [Pg.97]    [Pg.97]    [Pg.256]    [Pg.781]    [Pg.1025]    [Pg.1027]    [Pg.2271]    [Pg.197]    [Pg.2]    [Pg.226]    [Pg.238]    [Pg.34]    [Pg.143]    [Pg.143]    [Pg.30]    [Pg.346]    [Pg.16]    [Pg.95]    [Pg.234]    [Pg.67]    [Pg.86]    [Pg.942]    [Pg.141]    [Pg.108]    [Pg.772]    [Pg.779]    [Pg.820]    [Pg.292]    [Pg.126]    [Pg.188]    [Pg.200]    [Pg.200]    [Pg.53]   
See also in sourсe #XX -- [ Pg.266 ]




SEARCH



Phase space

Phase space theory

Space theory

Statistical theories phase-space theory

Statistical theories phase-space theory

Theories statistical theory

© 2024 chempedia.info