Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spindle bipolarity

Mayer TU, Kapoor TM, Haggarty SJ et al (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286 971... [Pg.587]

Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., and Mitchison, T. J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971—974. [Pg.353]

Figure 4 Correction of improper chromosome attachments by activation of Aurora kinase (45). (a) Assay schematic, (i) Treatment with the Eg5 inhibitor monastrol arrests cells in mitosis with monopolar spindles, in which sister chromosomes often are both attached to the single spindle pole, (ii) Hesperadin, an Aurora kinase inhibitor, is added as monastrol is removed. As the spindle bipolarizes with Aurora kinase inhibited, attachment errors fail to correct so that some sister chromosomes are still attached to the same pole of the bipolar spindle, (iii) Removal of hesperadin activates Aurora kinase. Incorrect attachments are destabilized by disassembling the microtubule fibers, which pulls the chromosomes to the pole, whereas correct attachments are stable, (iv) Chromosomes move from the pole to the center of the spindle as correct attachments form, (b) Structures of the Eg5 inhibitor monastrol and two Aurora kinase inhibitors, hesperadin and AKI-1. (c) Spindles were fixed after bipolarization either in the absence (i) or presence (ii) of an Aurora kinase inhibitor. Arrows indicate sister chromosomes that are both attached to the same spindle pole. Projections of multiple image planes are shown, with optical sections of boxed regions (1 and 2) to highlight attachment errors. Scale bars 5 xm. (d) After the removal of hesperadin, GFP-tubulin (top) and chromosomes (bottom) were imaged live by three-dimensional confocal fluorescence microcopy and DIC, respectively. Arrow and arrowhead show two chromosomes that move to the spindle pole (marked by circle in DIC images) as the associated kinetochore-microtubule fibers shorten and that then move to the center of the spindle. Time (minutes seconds) after the removal of hesperadin. Scale bar 5 (cm. Figure 4 Correction of improper chromosome attachments by activation of Aurora kinase (45). (a) Assay schematic, (i) Treatment with the Eg5 inhibitor monastrol arrests cells in mitosis with monopolar spindles, in which sister chromosomes often are both attached to the single spindle pole, (ii) Hesperadin, an Aurora kinase inhibitor, is added as monastrol is removed. As the spindle bipolarizes with Aurora kinase inhibited, attachment errors fail to correct so that some sister chromosomes are still attached to the same pole of the bipolar spindle, (iii) Removal of hesperadin activates Aurora kinase. Incorrect attachments are destabilized by disassembling the microtubule fibers, which pulls the chromosomes to the pole, whereas correct attachments are stable, (iv) Chromosomes move from the pole to the center of the spindle as correct attachments form, (b) Structures of the Eg5 inhibitor monastrol and two Aurora kinase inhibitors, hesperadin and AKI-1. (c) Spindles were fixed after bipolarization either in the absence (i) or presence (ii) of an Aurora kinase inhibitor. Arrows indicate sister chromosomes that are both attached to the same spindle pole. Projections of multiple image planes are shown, with optical sections of boxed regions (1 and 2) to highlight attachment errors. Scale bars 5 xm. (d) After the removal of hesperadin, GFP-tubulin (top) and chromosomes (bottom) were imaged live by three-dimensional confocal fluorescence microcopy and DIC, respectively. Arrow and arrowhead show two chromosomes that move to the spindle pole (marked by circle in DIC images) as the associated kinetochore-microtubule fibers shorten and that then move to the center of the spindle. Time (minutes seconds) after the removal of hesperadin. Scale bar 5 (cm.

See other pages where Spindle bipolarity is mentioned: [Pg.560]    [Pg.98]    [Pg.314]    [Pg.14]    [Pg.22]    [Pg.191]    [Pg.83]    [Pg.84]    [Pg.25]    [Pg.16]   
See also in sourсe #XX -- [ Pg.314 ]




SEARCH



Spindles

Spindles, bipolar

Spindles, bipolar

© 2024 chempedia.info