Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen atom spectra

Following C—H bond scission, the H atoms formed remain trapped in the vicinity of the alkyl radicak only at 4 K. A slight increase of temperature will induce their further reactions and decay. At scanewhat higher temperature (e.g. at 77 K), disproportionation and transfer reactions occur within a radical pair of alkyl radicals and hydrogen atoms, and in ESR spectrum hydrogen atoms cannot be traced. [Pg.161]

Figure Bl.4.9. Top rotation-tunnelling hyperfine structure in one of the flipping inodes of (020)3 near 3 THz. The small splittings seen in the Q-branch transitions are induced by the bound-free hydrogen atom tiiimelling by the water monomers. Bottom the low-frequency torsional mode structure of the water duner spectrum, includmg a detailed comparison of theoretical calculations of the dynamics with those observed experimentally [ ]. The symbols next to the arrows depict the parallel (A k= 0) versus perpendicular (A = 1) nature of the selection rules in the pseudorotation manifold. Figure Bl.4.9. Top rotation-tunnelling hyperfine structure in one of the flipping inodes of (020)3 near 3 THz. The small splittings seen in the Q-branch transitions are induced by the bound-free hydrogen atom tiiimelling by the water monomers. Bottom the low-frequency torsional mode structure of the water duner spectrum, includmg a detailed comparison of theoretical calculations of the dynamics with those observed experimentally [ ]. The symbols next to the arrows depict the parallel (A k= 0) versus perpendicular (A = 1) nature of the selection rules in the pseudorotation manifold.
By this time, we have introduced so many approximations and restrictions on our wave function and energy spectrum that is no longer quite legitimate to call it a Schroedinger equation (Schroedinger s initial paper treated the hydrogen atom only.) We now write... [Pg.276]

This discussion may well leave one wondering what role reality plays in computation chemistry. Only some things are known exactly. For example, the quantum mechanical description of the hydrogen atom matches the observed spectrum as accurately as any experiment ever done. If an approximation is used, one must ask how accurate an answer should be. Computations of the energetics of molecules and reactions often attempt to attain what is called chemical accuracy, meaning an error of less than about 1 kcal/mol. This is suf-hcient to describe van der Waals interactions, the weakest interaction considered to affect most chemistry. Most chemists have no use for answers more accurate than this. [Pg.3]

The hydrogen atom and one-electron ions are the simplest systems in the sense that, having only one electron, there are no inter-electron repulsions. However, this unique property leads to degeneracies, or near-degeneracies, which are absent in all other atoms and ions. The result is that the spectrum of the hydrogen atom, although very simple in its coarse structure (Figure 1.1) is more unusual in its fine structure than those of polyelectronic atoms. For this reason we shall defer a discussion of its spectrum to the next section. [Pg.213]

Whereas the emission spectrum of the hydrogen atom shows only one series, the Balmer series (see Figure 1.1), in the visible region the alkali metals show at least three. The spectra can be excited in a discharge lamp containing a sample of the appropriate metal. One series was called the principal series because it could also be observed in absorption through a column of the vapour. The other two were called sharp and diffuse because of their general appearance. A part of a fourth series, called the fundamental series, can sometimes be observed. [Pg.213]

The hydrogen atom and its spectrum are of enormous importance in astrophysics because of the large abundance of hydrogen atoms both in stars, including the sun, and in the interstellar medium. [Pg.217]

Question. Calculate, to three significant figures, the wavelength of the first member of each of the series in the spectrum of atomic hydrogen with the quantum number (see Section f.2) n" = 90 and 166. In which region of the electromagnetic spectrum do these transitions appear ... [Pg.218]

The mass spectrum of 2-pyrone shows an abundant molecular ion and a very prominent ion due to loss of CO and formation of the furan radical cation. Loss of CO from 4-pyrone, on the other hand, is almost negligible, and the retro-Diels-Alder fragmentation pathway dominates. In alkyl-substituted 2-pyrones loss of CO is followed by loss of a hydrogen atom from the alkyl substituent and ring expansion of the resultant cation to the very stable pyrylium cation. Similar trends are observed with the benzo analogues of the pyrones, although in some cases both modes of fragmentation are observed. Thus, coumarins. [Pg.22]

It follows from the spectrum of the electron energy losses that the hydrogen atom on the (110) face of a tungsten crystal participates in vibrations with frequencies 1310cm 820 cm and. [Pg.111]

Figure 18.16 One-dlmenslonal NMR spectra, (a) H-NMR spectrum of ethanol. The NMR signals (chemical shifts) for all the hydrogen atoms In this small molecule are clearly separated from each other. In this spectrum the signal from the CH3 protons Is split Into three peaks and that from the CH2 protons Into four peaks close to each other, due to the experimental conditions, (b) H-NMR spectrum of a small protein, the C-terminal domain of a cellulase, comprising 36 amino acid residues. The NMR signals from many individual hydrogen atoms overlap and peaks are obtained that comprise signals from many hydrogen atoms. (Courtesy of Per Kraulis, Uppsala, from data published in Kraulis et al.. Biochemistry 28 7241-7257, 1989.)... Figure 18.16 One-dlmenslonal NMR spectra, (a) H-NMR spectrum of ethanol. The NMR signals (chemical shifts) for all the hydrogen atoms In this small molecule are clearly separated from each other. In this spectrum the signal from the CH3 protons Is split Into three peaks and that from the CH2 protons Into four peaks close to each other, due to the experimental conditions, (b) H-NMR spectrum of a small protein, the C-terminal domain of a cellulase, comprising 36 amino acid residues. The NMR signals from many individual hydrogen atoms overlap and peaks are obtained that comprise signals from many hydrogen atoms. (Courtesy of Per Kraulis, Uppsala, from data published in Kraulis et al.. Biochemistry 28 7241-7257, 1989.)...
Figure 18.17 Two-dimensional NMR spectnim of the C-terminal domain of a cellulase. The peaks along the diagonal correspond to the spectrum shown in Figure 18.16b. The off-diagonal peaks in this NOE spectrum represent interactions between hydrogen atoms that are closer than 5 A to each other in space. From such a spectrum one can obtain information on both the secondary and tertiary structures of the protein. (Courtesy of Per Kraulis, Uppsala.)... Figure 18.17 Two-dimensional NMR spectnim of the C-terminal domain of a cellulase. The peaks along the diagonal correspond to the spectrum shown in Figure 18.16b. The off-diagonal peaks in this NOE spectrum represent interactions between hydrogen atoms that are closer than 5 A to each other in space. From such a spectrum one can obtain information on both the secondary and tertiary structures of the protein. (Courtesy of Per Kraulis, Uppsala.)...
Figure 18.20 The two-dimensional NMR spectrum shown in Figure 18.17 was used to derive a number of distance constraints for different hydrogen atoms along the polypeptide chain of the C-terminal domain of a cellulase. The diagram shows 10 superimposed structures that all satisfy the distance constraints equally well. These structures are all quite similar since a large number of constraints were experimentally obtained. (Courtesy of P. Kraulis, Uppsala, from data published in P. Kraulis et ah. Biochemistry 28 7241-7257, 1989, by copyright permission of the American Chemical Society.)... Figure 18.20 The two-dimensional NMR spectrum shown in Figure 18.17 was used to derive a number of distance constraints for different hydrogen atoms along the polypeptide chain of the C-terminal domain of a cellulase. The diagram shows 10 superimposed structures that all satisfy the distance constraints equally well. These structures are all quite similar since a large number of constraints were experimentally obtained. (Courtesy of P. Kraulis, Uppsala, from data published in P. Kraulis et ah. Biochemistry 28 7241-7257, 1989, by copyright permission of the American Chemical Society.)...
The simplest place to start is with a hydrogen atom. The experimental ESR spectrum shows two lines separated by 1420.4 MHz (often reported as a magnetic induction, since transitions occur at the resonance condition hv = In... [Pg.310]

The electronic spectrum of a compound arises from its 7r-electron system which, to a first approximation, is unaffected by substitution of an alkyl group for a hydrogen atom. Thus, comparison of the ultraviolet spectrum of a potentially tautomeric compound with the spectra of both alkylated forms often indicates which tautomer predominates. For example, Fig. 1 shows that 4-mercaptopyridine exists predominantly as pyrid-4-thione. In favorable cases, i.e., when the spectra of the two alkylated forms are very different and/or there are appreciable amounts of both forms present at equilibrium, the tautomeric constant can be evaluated. By using this method, it was shown, for example, that 6-hydroxyquinoline exists essentially as such in ethanol but that it is in equilibrium with about 1% of the zwitterion form in aqueous solution (Fig. 2). [Pg.328]

If a methyl group replaces a hydrogen atom on the carbon of the C==N bond across which addition of water occurs, a considerable reduction in the extent of water addition is observed. Conversely, the existence of such a blocking effect can be used as a provisional indication of the site at which addition of water occurs, while the spectrum and acid dissociation constant of the methyl derivative provide a useful indication of the corresponding properties of the anhydrous parent substance. Examples of the effect of such a methyl group on equilibria are given in Table IV. [Pg.52]


See other pages where Hydrogen atom spectra is mentioned: [Pg.60]    [Pg.60]    [Pg.282]    [Pg.66]    [Pg.67]    [Pg.5]    [Pg.24]    [Pg.1447]    [Pg.1450]    [Pg.440]    [Pg.201]    [Pg.379]    [Pg.6]    [Pg.118]    [Pg.216]    [Pg.217]    [Pg.218]    [Pg.254]    [Pg.24]    [Pg.123]    [Pg.246]    [Pg.477]    [Pg.388]    [Pg.388]    [Pg.389]    [Pg.389]    [Pg.199]    [Pg.269]    [Pg.668]    [Pg.193]    [Pg.145]    [Pg.148]    [Pg.397]    [Pg.416]    [Pg.114]   
See also in sourсe #XX -- [ Pg.40 ]

See also in sourсe #XX -- [ Pg.316 , Pg.317 , Pg.318 , Pg.319 ]




SEARCH



Atomic spectra

Atomic spectra hydrogen spectrum

Hydrogen atom atomic spectra

Hydrogen atomic spectrum

Hydrogen spectrum

Hydrogenic spectra

Spectrum atomic spectra

© 2024 chempedia.info