Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy electron polarization CIDEP

Time-resolved laser flash ESR spectroscopy generates radicals with nonequilibrium spin populations and causes spectra with unusual signal directions and intensities. The signals may show absorption, emission, or both and be enhanced as much as 100-fold. Deviations from Boltzmann intensities, first noted in 1963, are known as chemically induced dynamic electron polarization (CIDEP). Because the splitting pattern of the intermediate remains unaffected, the CIDEP enhancement facilitates the detection of short-lived radicals. A related technique, fluorescence detected magnetic resonance (FDMR) offers improved time resolution and its sensitivity exceeds that of ESR. The FDMR experiment probes short-lived radical ion pairs, which form reaction products in electronically excited states that decay radiatively. ... [Pg.213]

Appropriate modification of the ESR spectrometer and generation of free radicals by flash photolysis enables time-resolved (TR) ESR spectroscopy [22]. Spectra observed under these conditions are remarkable for their signal directions and intensities. They can be enhanced as much as one-hundredfold and appear as absorption, emission, or a combination of both. Effects of this type are a result of chemically induced dynamic electron polarization (CIDEP) these spectra indicate the intermediacy of radicals whose sublevel populations deviate substantially from equilibrium populations. Significantly, the splitting pattern characteristic of the spin-density distribution of the intermediate remains unaffected thus, the CIDEP enhancement not only facilitates the detection of short-lived radicals at low concentrations, but also aids their identification. Time-resolved ESR techniques cannot be expected to be of much use for electron-transfer reactions from alkanes, because their oxidation potentials are prohibitively high. Even branched alkanes have oxidation potentials well above the excited-state reduction potential of typical photo-... [Pg.723]

Photo-induced Electron Transfer. Electron transfer is one of the most fundamental and widespread reactions in nature and has been extensively studied. In addition to the optical absorption spectroscopy widely used, TR EPR has become established as an appropriate method to study electron-transfer processes. In most of these investigations CIDEP effects are observed. The spin-polarization effects originate in the spin selectivity of chemical and physical processes involved in free-radical formation and decay, as well as in the spin-state evolution in transient paramagnetic precursors. For this reason, CIDEP constitutes a unique probe of the mechanistic details of electron-transfer processes. [Pg.80]


See other pages where Spectroscopy electron polarization CIDEP is mentioned: [Pg.278]    [Pg.1590]    [Pg.127]    [Pg.45]    [Pg.1590]    [Pg.14]    [Pg.3]    [Pg.343]    [Pg.45]    [Pg.204]    [Pg.191]   


SEARCH



CIDEP

Electron polarization

Polarization electronic

Polarization spectroscopy

© 2024 chempedia.info