Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent propagation

Polymerization of epoxides occurs readily under the influence of strong bases in both protic and aprotic solvents, propagation involving stepwise growth of alkoxide ions. Dimethyl sulfoxide (DMSO) is the most useful of the dipolar aprotic solvents and shows a marked ability to solvate cations (especially K ) whilst leaving anions essentially unsolvated. As a consequence nucleophilic reactivity of anions is greater in solvents such as DMSO. [Pg.817]

In all cases, the rate of process is higher in aliphatic than in aromatic hydrocarbons. The data for n-heptane and toluene show that in these solvents, propagation rates are different, Table 3.1. A similar effect was observed earlier [28] for polymerisation of isoprene in n-hexane [Kp = 730 l/(mol min)] and in toluene [Kp = 240 l/(mol min)] at 25 °C on the catalytic system (CgH5)3CNdCl2 THF-Al(i-C4H9)3. [Pg.80]

The nebulization concept has been known for many years and is commonly used in hair and paint spays and similar devices. Greater control is needed to introduce a sample to an ICP instrument. For example, if the highest sensitivities of detection are to be maintained, most of the sample solution should enter the flame and not be lost beforehand. The range of droplet sizes should be as small as possible, preferably on the order of a few micrometers in diameter. Large droplets contain a lot of solvent that, if evaporated inside the plasma itself, leads to instability in the flame, with concomitant variations in instrument sensitivity. Sometimes the flame can even be snuffed out by the amount of solvent present because of interference with the basic mechanism of flame propagation. For these reasons, nebulizers for use in ICP mass spectrometry usually combine a means of desolvating the initial spray of droplets so that they shrink to a smaller, more uniform size or sometimes even into small particles of solid matter (particulates). [Pg.106]

Fig. 1. Pressure required for propagation of decomposition flame through commercially pure acetylene free of solvent and water vapor in long horizontal pipes. Gas initially at room temperature ignition by thermal nonshock sources. Curve shows approximate least pressure for propagation (0), detonation,... Fig. 1. Pressure required for propagation of decomposition flame through commercially pure acetylene free of solvent and water vapor in long horizontal pipes. Gas initially at room temperature ignition by thermal nonshock sources. Curve shows approximate least pressure for propagation (0), detonation,...
The rate of ion propagation, is independent of the counterion and has been found to be about 46 X 10 in all cases for CF SO", AsF, SbF, SbCFg, PF g, and BF/ counterions. Conditions were the same for all counterions, ie, 8.0 M of monomer in CCI4 solvent and 25°C polymerization temperature. With less stable counterions such as SbCF and BF at most temperatures, the influence of transfer and termination reactions must be taken into account (71). [Pg.363]

For counterions that can form esters with the growing oxonium ions, the kinetics of propagation are dominated by the rate of propagation of the macroions. For any given counterion, the proportion of macroions compared to macroesters varies with the solvent—monomer mixture and must be deterrnined independentiy before a kinetic analysis can be made. The macroesters can be considered to be in a state of temporary termination. When the proportion of macroions is known and initiation is sufftcientiy fast, equation 2 is satisfied. [Pg.363]

Epichlorohydrin Elastomers without AGE. Polymerization on a commercial scale is done as either a solution or slurry process at 40—130°C in an aromatic, ahphatic, or ether solvent. Typical solvents are toluene, benzene, heptane, and diethyl ether. Trialkylaluniinum-water and triaLkylaluminum—water—acetylacetone catalysts are employed. A cationic, coordination mechanism is proposed for chain propagation. The product is isolated by steam coagulation. Polymerization is done as a continuous process in which the solvent, catalyst, and monomer are fed to a back-mixed reactor. Pinal product composition of ECH—EO is determined by careful control of the unreacted, or background, monomer in the reactor. In the manufacture of copolymers, the relative reactivity ratios must be considered. The reactivity ratio of EO to ECH has been estimated to be approximately 7 (35—37). [Pg.555]

Ah these polymerizations proceed only in the absence of oxygen or water, which react with the highly reactive propagating species. Polymerization is usuahy carried out in an inert, hydrocarbon solvent and under a nitrogen blanket. Under these conditions, polymers with narrow molecular-weight distributions and precise molecular weights can be produced in stoichiometric amounts. [Pg.15]

In many technical polymerisations transfer reactions to modifier, solvent, monomer and even initiator may occur. In these cases whereas the overall propagation rate is unaffected the additional ways of terminating a growing chain will cause a reduction in the degree of polymerisation. [Pg.30]

Much of the CI2O manufactured industrially is used to make hypochlorites, particularly Ca(OCl)2, and it is an effective bleach for wood-pulp and textiles. CI2O is also used to prepare chloroisocyanurates (p. 324) and chlorinated solvents (via mixed chain reactions in which Cl and OCl are the chain-propagating species).Its reactions with inorganic reagents are summarized in the scheme opposite. [Pg.846]

Figure 20 Feed-forward neural network training and testing results with back-propagation training for solvent activity predictions in polar binaries (with learning parameter rj = O.l). Figure 20 Feed-forward neural network training and testing results with back-propagation training for solvent activity predictions in polar binaries (with learning parameter rj = O.l).
Other reasons for a wide propagation of polymerization in water include (1) reduction of energy consumed to separate the initial monomer in crystal form (acrylamide is produced and used in the aqueous solution form), which, in addition, is associated with the probability of its spontaneous polymerization, and (2) recovery of the organic solvents, which results in less environmental pollution and the elimination of the stage of solution of polymer reagents used, as a rule, in the form of the aqueous solutions. [Pg.65]

Chain transfer reaction during propagation gives homopolymers as well as block copolymers. Separation of the homopolymers is performed by extraction with suitable solvents. Homopolymer A together with a small amount of block copolymer rich in component A are extracted... [Pg.759]

In the case of crystalline polymers it may be that solvents can cause cracking by activity in the amorphous zone. Examples of this are benzene and toluene with polyethylene. In polyethylene, however, the greater problem is that known as environmental stress cracking , which occurs with materials such as soap, alcohols, surfactants and silicone oils. Many of these are highly polar materials which cause no swelling but are simply absorbed either into or on to the polymer. This appears to weaken the surface and allows cracks to propagate from minute flaws. [Pg.931]

A radical polymerization involves free radical ends which of course do not associate and which interact only weakly with solvents. Consequently, the early investigators assumed that the course of propagation of radical polymerization is independent of the environment (see, for example, the recent monograph by Walling60). Actually, more recent studies, notably by Russell,36 showed that the nature of the solvent sometimes might considerably affect even the course of radical reactions. Therefore, unusual behavior of the propagation step might be expected in certain solvents. [Pg.159]


See other pages where Solvent propagation is mentioned: [Pg.19]    [Pg.1583]    [Pg.317]    [Pg.365]    [Pg.97]    [Pg.338]    [Pg.34]    [Pg.119]    [Pg.19]    [Pg.1583]    [Pg.317]    [Pg.365]    [Pg.97]    [Pg.338]    [Pg.34]    [Pg.119]    [Pg.2600]    [Pg.1009]    [Pg.548]    [Pg.344]    [Pg.245]    [Pg.467]    [Pg.369]    [Pg.437]    [Pg.424]    [Pg.47]    [Pg.497]    [Pg.498]    [Pg.513]    [Pg.517]    [Pg.294]    [Pg.437]    [Pg.482]    [Pg.480]    [Pg.480]    [Pg.27]    [Pg.175]    [Pg.444]    [Pg.1105]    [Pg.325]    [Pg.478]    [Pg.157]    [Pg.159]   


SEARCH



Propagation of Polydiene Salts in Ethereal Solvents

Propagation of Styrene and the Dienes Polymerization in Hydrocarbon Solvents with Li Counter-Ions

© 2024 chempedia.info