Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution terminology

Now we present the standard derivation of the Fokker-Planck equation for polymers in solution. (Terminology can often be confusing in the present instance, the equation of interest is also called the Smoluchowski equation, and may be regarded as a limiting case of a more general Fokker-Planck equation, or a Kramers equation.)... [Pg.328]

With this terminology in mind, we can restate the objective of this section as the interpretation of the intrinsic viscosities of solutions of rigid molecules. If the solute molecules are known to be spherical, comparison of Eqs. (9.10) and (9.14) shows that the intrinsic viscosity for such systems is given by... [Pg.593]

The pressure difference between the high and low pressure sides of the membrane is denoted as AP the osmotic pressure difference across the membrane is defined as Att the net driving force for water transport across the membrane is AP — (tAtt, where O is the Staverman reflection coefficient and a = 1 means 100% solute rejection. The standardized terminology recommended for use to describe pressure-driven membrane processes, including that for reverse osmosis, has been reviewed (24). [Pg.146]

Solution Using the terminology from the analysis of blow moulding in Section 4.2.5. [Pg.383]

C 0.5012 mol 2 at 15°C). It is clearly unwise to associate a pH meter reading too closely with pH unless under very controlled conditions, and still less sensible to relate the reading to the actual hydrogen-ion concentration in solution. For further discussion of pH mea.surements, see Pure Appl. Chem. 57, 531-42 (1985) Definition of pH Scales, Standard Reference Values, Measurement of pH and Related Terminology. Also C E News, Oct. 20. 1997. p. 6. [Pg.49]

The symbol used is dependent upon the method of expressing the concentration of the solution. The recommendations of the IUPAC Commision on Symbols, Terminology and Units (1969) are as follows concentration in moles per litre (molarity), activity coefficient represented by y, concentration in mols per kilogram (molality), activity coefficient represented by y, concentration expressed as mole fraction, activity coefficient represented by f... [Pg.23]

The terminology of L-B films originates from the names of two scientists who invented the technique of film preparation, which transfers the monolayer or multilayers from the water-air interface onto a solid substrate. The key of the L-B technique is to use the amphiphih molecule insoluble in water, with one end hydrophilic and the other hydrophobic. When a drop of a dilute solution containing the amphiphilic molecules is spread on the water-air interface, the hydrophilic end of the amphiphile is preferentially immersed in the water and the hydrophobic end remains in the air. After the evaporation of solvent, the solution leaves a monolayer of amphiphilic molecules in the form of two-dimensional gas due to relatively large spacing between the molecules (see Fig. 15 (a)). At this stage, a barrier moves and compresses the molecules on the water-air interface, and as a result the intermolecular distance decreases and the surface pressure increases. As the compression from the barrier proceeds, two successive phase transitions of the monolayer can be observed. First a transition from the gas" to the liquid state. [Pg.88]

When trade-offs exist, no single compound will stand out uniquely as the optimum drug for the market, ranked hrst on all measures of performance. Rather, a set of compounds will be considered that, on current knowledge, span the optimal solution to the problem. These compounds are those for which there is no other compound that offers equivalent performance across all criteria and superior performance in at least one. In multicriteria decision analysis (MCDA) terminology, they are known as Pareto-optimal solutions. This concept is illustrated by the two-criteria schematic in Figure 11.3. [Pg.256]

The system of distinctions and terminology of the thermodynamic and electric potentials introduced by Lange is still very useful and recommended for describing all electrified phases and interphases. Therefore these potentials can be assigned to metal/solution (M/s), as well as the liquid/liquid boundaries created at the interfaces of two immiscible electrolyte solutions water (w) and an organic solvent (s). [Pg.14]


See other pages where Solution terminology is mentioned: [Pg.109]    [Pg.109]    [Pg.457]    [Pg.458]    [Pg.459]    [Pg.493]    [Pg.495]    [Pg.270]    [Pg.275]    [Pg.109]    [Pg.109]    [Pg.457]    [Pg.458]    [Pg.459]    [Pg.493]    [Pg.495]    [Pg.270]    [Pg.275]    [Pg.391]    [Pg.667]    [Pg.60]    [Pg.416]    [Pg.26]    [Pg.236]    [Pg.630]    [Pg.1993]    [Pg.12]    [Pg.17]    [Pg.87]    [Pg.164]    [Pg.520]    [Pg.284]    [Pg.56]    [Pg.498]    [Pg.1199]    [Pg.17]    [Pg.11]    [Pg.89]    [Pg.372]    [Pg.56]    [Pg.77]    [Pg.1004]    [Pg.310]    [Pg.359]    [Pg.592]    [Pg.432]    [Pg.606]    [Pg.694]    [Pg.43]   


SEARCH



Terminologies

© 2024 chempedia.info