Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Simple Frequency-Domain Instruments

There is significant debate about the relative merits of frequency and time domain. In principle, they are related via the Fourier transformation and have been experimentally verified to be equivalent [9], For some applications, frequency domain instrumentation is easier to implement since ultrashort light pulses are not required, nor is deconvolution of the instrument response function, however, signal to noise ratio has recently been shown to be theoretically higher for time domain. The key advantage of time domain is that multiple decay components can, at least in principle, be extracted with ease from the decay profile by fitting with a multiexponential function, using relatively simple mathematical methods. [Pg.460]

Prior to describing the possible applications of laser-diode fluorometry, it is important to understand the two methods now used to measure fluorescence lifetimes these being the time-domain (Tl)/4 5 24 and frequency-domain (FD) or phase-modulation methods.(25) In TD fluorometry, the sample is excited by a pulse of light followed by measurement of the time-dependent intensity. In FD fluorometry, the sample is excited with amplitude-modulated light. The lifetime can be found from the phase angle delay and demodulation of the emission relative to the modulated incident light. We do not wish to fuel the debate of TD versus FD methods, but it is clear that phase and modulation measurements can be performed with simple and low cost instrumentation, and can provide excellent accuracy with short data acquisition times. [Pg.5]

FTICR-MS instruments operate on the principle of ion cyclotron resonance. As ions have resonant frequencies, these frequencies can be used to isolate the ions prior to further fragmentation or manipulation. For example, a resonant frequency pulse on the excite plates (E+/— in Figure 2.8b) will eject the ions at, or near, that frequency. Furthermore, frequency sweeps - carefully defined to not excite the ion of interest - can be used to eject unwanted ions. However, the most elegant method for ion isolation is that of Stored Waveform Inverse Fourier Transform (SWIFT) [86] in which an ion-exdtation pattern of interest is chosen, inverse Fourier-transformed, and the resulting time domain signal stored in memory. This stored signal is then clocked-out, amplified, and sent to the excite plates when needed. The typical isolation waveform in SWIFT uses a simple excitation box with a notch at the frequencies of the ion of interest, a few kHz. [Pg.71]


See other pages where Simple Frequency-Domain Instruments is mentioned: [Pg.149]    [Pg.699]    [Pg.132]    [Pg.306]    [Pg.712]    [Pg.167]    [Pg.20]    [Pg.224]    [Pg.712]    [Pg.1371]    [Pg.22]    [Pg.23]    [Pg.87]   


SEARCH



Frequency domain

Frequency domain instruments

© 2024 chempedia.info