Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silanolate

Figure C2.12.8. Schematics of tlie dealumination of zeolites. Water adsorbed on a Br( msted site hydrolyses tire Al-O bond and fonns tire first silanol group. The remaining Al-0 bonds are successively hydrolysed leaving a silanol nest and extra-framework aluminium. Aluminium is cationic at low pH. Figure C2.12.8. Schematics of tlie dealumination of zeolites. Water adsorbed on a Br( msted site hydrolyses tire Al-O bond and fonns tire first silanol group. The remaining Al-0 bonds are successively hydrolysed leaving a silanol nest and extra-framework aluminium. Aluminium is cationic at low pH.
AIO4 tetraliedra directly linked to an SiO. tetraliedron can be detennined from Si NMR since different chemical shifts are observed for tire corresponding Si nuclei. In tire absence of large concentrations of silanol defects, which... [Pg.2788]

The phosphorus ylides of the Wittig reaction can be replaced by trimethylsilylmethyl-carbanions (Peterson reaction). These silylated carbanions add to carbonyl groups and can easily be eliminated with base to give olefins. The only by-products are volatile silanols. They are more easily removed than the phosphine oxides or phosphates of the more conventional Wittig or Homer reactions (D.J. Peterson, 1968). [Pg.33]

The silanols formed above are unstable and under dehydration. On polycondensation, they give polysiloxanes (or silicones) which are characterized by their three-dimensional branched-chain structure. Various organic groups introduced within the polysiloxane chain impart certain characteristics and properties to these resins. [Pg.1023]

The most widely used particulate support is diatomaceous earth, which is composed of the silica skeletons of diatoms. These particles are quite porous, with surface areas of 0.5-7.5 m /g, which provides ample contact between the mobile phase and stationary phase. When hydrolyzed, the surface of a diatomaceous earth contains silanol groups (-SiOH), providing active sites that absorb solute molecules in gas-solid chromatography. [Pg.564]

Amorphous sihca exists also ia a variety of forms that are composed of small particles, possibly aggregated. Commonly encountered products iaclude sihca sols, sihca gels, precipitated sihca, and pyrogenic sihca (9,73). These products differ ia their modes of manufacture and the way ia which the primary particles aggregate (Fig. 8). Amorphous sihcas are characterhed by small ultimate particle si2e and high specific surface area. Their surfaces may be substantially anhydrous or may contain silanol, —SiOH, groups. These sihcas are frequentiy viewed as condensation polymers of sihcic acid, Si(OH)4. [Pg.476]

Fig. 1. Silanol groups of amorphous silica surface, where 0= Si Q — O and = H (a) isolated, (b) vicinal, and (c) geminal. Fig. 1. Silanol groups of amorphous silica surface, where 0= Si Q — O and = H (a) isolated, (b) vicinal, and (c) geminal.
Polymerization and depolymerization of sihcate anions and their interactions with other ions and complexing agents are of great interest in sol—gel and catalyst manufacture, detergency, oil and gas production, waste management, and limnology (45—50). The complex silanol condensation process may be represented empirically by... [Pg.6]

Condensation occurs most readily at a pH value equal to the piC of the participating silanol group. This representation becomes less vaUd at pH values above 10, where the rate constant of the depolymerization reaction k 2 ) becomes significant and at very low pH values where acids exert a catalytic influence on polymerization. The piC of monosilicic acid is 9.91 0.04 (51). The piC value of Si—OH decreases to 6.5 in higher order sihcate polymers (52), which is consistent with piC values of 6.8 0.2 reported for the surface silanol groups of sihca gel (53). Thus, the acidity of silanol functionahties increases as the degree of polymerization of the anion increases. However, the exact relationship between the connectivity of the silanol sihcon and SiOH acidity is not known. [Pg.6]

Organic amines, eg, pyridine and piperidine, have also been used successfully as catalysts in the reactions of organosilanes with alcohols and silanols. The reactions of organosilanes with organosilanols lead to formation of siloxane bonds. Nickel, zinc, and tin also exhibit a catalytic effect. [Pg.26]

For binder preparation, dilute hydrochloric or acetic acids are preferred, because these faciUtate formation of stable silanol condensation products. When more complete condensation or gelation is preferred, a wider range of catalysts, including moderately basic ones, is employed. These materials, which are often called hardeners or accelerators, include aqueous ammonia, ammonium carbonate, triethanolamine, calcium hydroxide, magnesium oxide, dicyclohexylamine, alcohoHc ammonium acetate, and tributyltin oxide (11,12). [Pg.38]

The first mechanistic studies of silanol polycondensation on the monomer level were performed in the 1950s (73—75). The condensation of dimethyl sil oxanediol in dioxane exhibits second-order kinetics with respect to diol and first-order kinetics with respect to acid. The proposed mechanism involves the protonation of the silanol group and subsequent nucleophilic substitution at the siHcone (eqs. 10 and 11). [Pg.45]


See other pages where Silanolate is mentioned: [Pg.396]    [Pg.2785]    [Pg.70]    [Pg.221]    [Pg.232]    [Pg.564]    [Pg.598]    [Pg.885]    [Pg.885]    [Pg.885]    [Pg.886]    [Pg.1051]    [Pg.1066]    [Pg.1]    [Pg.54]    [Pg.328]    [Pg.329]    [Pg.329]    [Pg.330]    [Pg.241]    [Pg.451]    [Pg.467]    [Pg.470]    [Pg.483]    [Pg.486]    [Pg.489]    [Pg.490]    [Pg.490]    [Pg.491]    [Pg.491]    [Pg.491]    [Pg.493]    [Pg.6]    [Pg.6]    [Pg.6]    [Pg.26]    [Pg.26]    [Pg.37]    [Pg.40]   
See also in sourсe #XX -- [ Pg.130 ]

See also in sourсe #XX -- [ Pg.66 , Pg.75 , Pg.78 , Pg.81 , Pg.83 ]




SEARCH



Silanolates

Silanoles

Silanols

© 2024 chempedia.info