Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Serine transacetylase cysteine synthesis

Fig. 3. Regulation of the bound pathway for the assimilation of sulfate into cysteine and associated processes. Carrier refers to an endogenous thiol of uncertain identity in higher plants. Enzymes associated with the sulfate assimilation pathway and the synthesis of O-acetylseiine are (1) high-ailinity sulfate uptake mechanism, (2) ATP-sulfurylase, (3) adenosine S -phosphosulfate (APS) sulfotransferase, (4) organic thiosulfate reductase, (5) cysteine synthase, and (6) serine transacetylase. Cysteine sulfhydrase (7), an enzyme of cysteine catabolism, and nitrate reductase (8), the first enzyme of the nitrate assimilation pathway, are also shown. Inhibitory control of the pathways is shown by discontinuous lines (----) and enhancement by continuous lines (------). Fig. 3. Regulation of the bound pathway for the assimilation of sulfate into cysteine and associated processes. Carrier refers to an endogenous thiol of uncertain identity in higher plants. Enzymes associated with the sulfate assimilation pathway and the synthesis of O-acetylseiine are (1) high-ailinity sulfate uptake mechanism, (2) ATP-sulfurylase, (3) adenosine S -phosphosulfate (APS) sulfotransferase, (4) organic thiosulfate reductase, (5) cysteine synthase, and (6) serine transacetylase. Cysteine sulfhydrase (7), an enzyme of cysteine catabolism, and nitrate reductase (8), the first enzyme of the nitrate assimilation pathway, are also shown. Inhibitory control of the pathways is shown by discontinuous lines (----) and enhancement by continuous lines (------).
Fig. 2. Summary of the free and bound pathways of sulfate assimilation in plants. Some related reactions and points of entry of several forms of inorganic sulfur are also shown. The reaction sequence catalyzed by (1) ATP sulfurylase, (2) APS sulfotransferase, (3) thiosulfonate reductase, and (4) cysteine synthase constitutes the bound sulfate assimilation pathway. The synthesis of OAS is catalyzed by (5) serine transacetylase. The reaction sequence (I), (6)-(9)or (1), (2), (10), (8), (9) constitutes the free pathway reactims (7) and (10) are nonenzymatic, (6) is catalyzed by APS sulfotransferase, (8) by sulfite reductase, and (9) by cysteine synthase. APS and PAPS are interrelated via (11) APS kinase and (12) NDP phophohydrolase. APS can be hydrolyzed via (13) APS sulfohydrolase or (14) APS cyclase. Fig. 2. Summary of the free and bound pathways of sulfate assimilation in plants. Some related reactions and points of entry of several forms of inorganic sulfur are also shown. The reaction sequence catalyzed by (1) ATP sulfurylase, (2) APS sulfotransferase, (3) thiosulfonate reductase, and (4) cysteine synthase constitutes the bound sulfate assimilation pathway. The synthesis of OAS is catalyzed by (5) serine transacetylase. The reaction sequence (I), (6)-(9)or (1), (2), (10), (8), (9) constitutes the free pathway reactims (7) and (10) are nonenzymatic, (6) is catalyzed by APS sulfotransferase, (8) by sulfite reductase, and (9) by cysteine synthase. APS and PAPS are interrelated via (11) APS kinase and (12) NDP phophohydrolase. APS can be hydrolyzed via (13) APS sulfohydrolase or (14) APS cyclase.
The effect of different amino acids supplements on the synthesis of PHB by recombinant E. coli was evaluated by Mahishi and Rawal. The study revealed that when the basal medium is supplemented with amino acids, except glycine and valine, all other amino acid supplements enhanced PHB accumulation in recombinant E. coli harboring PHB synthesizing genes from S. aureqfaciens. Cysteine, isoleucine, or methionine supplementation increased PHB accumulation by 60, 45, and 61%, respectively. Amino acid biosynthetic enzyme activities in several pathways are repressed by end produa supplementation. End product inhibition in the cysteine biosynthetic pathway controls the carbon flow due to sensitivity of serine transacetylase to cysteine. Hence, supplementation of cysteine favors a change in carbon flux that eliminates the requirement of acetyl-CoA for serine transacetylation which in turn provides more carbon source and acetyl-CoA for PHB synthesis. Degradation of methionine and isoleucine yields succinyl CoA, an intermediate of tricarboxylic acid cycle and allows more acetyl-CoA to enter the PHB biosynthetic pathway. [Pg.593]

Fig. 6. Subcellular location of the enzymes of cysteine and methionine synthesis in photosynthetic cells in C3 plants. The scheme incorporates the proposals of Wallsgrove et al. (1983) for the synthesis of phosphohomoserine and methionine and current understanding of the location of the enzymes of the sulfate assimilation pathway and of serine transacetylase. Abbreviations OAS, 0-acetylserine PHS, phosphohomoserine THF, tetrahydrofolate. Fig. 6. Subcellular location of the enzymes of cysteine and methionine synthesis in photosynthetic cells in C3 plants. The scheme incorporates the proposals of Wallsgrove et al. (1983) for the synthesis of phosphohomoserine and methionine and current understanding of the location of the enzymes of the sulfate assimilation pathway and of serine transacetylase. Abbreviations OAS, 0-acetylserine PHS, phosphohomoserine THF, tetrahydrofolate.

See other pages where Serine transacetylase cysteine synthesis is mentioned: [Pg.127]    [Pg.460]    [Pg.372]   
See also in sourсe #XX -- [ Pg.339 , Pg.340 ]




SEARCH



Cysteine synthesis

Serine synthesis

Serine transacetylase

© 2024 chempedia.info