Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selenides to selenoxides

Epoxyketone 60 has also been prepared by hydroxyselenation of 4-acetyl-1-methylcyclohexene with phenylselenium chloride and water, oxidation of the selenide to selenoxide with buffered aqueous oxone, and elimination of the se-lenoxide in the same pot to provide the epoxide [80]. Control of the conditions was essential to prevent epimerization of the ketone. This route has little to recommend it given the expense and toxicity of the reagents, the moderate yield, and the problems with epimerization. [Pg.68]

Oxidation of chiral sulfonimines (R"S02N=CHAr)and chiral sulfamyl-imines (R RNS02N=CHAr)affords optically active 2-sulfonyloxaziridines and 2-sulfamyloxaziridines, respectively. These chiral, oxidizing reagents have been used in the asymmetric oxidation of sulfides to sulfoxides (15-68% ee), 11-13 selenides to selenoxides (8-9% ee] enolates to a-hydroxycarbonyl compounds (8-37% ee) and in the asymmetric epoxidation of alkenes (15-40% ee)... [Pg.241]

N-Sulfonyloxaziridines are an important class of selective, neutral, and aprotic oxidizing reagents.11 Enantiopure N-sulfonyloxaziridines have been used in the asymmetric hydroxylation of enolates to enantiomerically enriched a-hydroxy carbonyl compounds,9 11-13 the asymmetric oxidation of sulfides to sulfoxides,14 1S selenides to selenoxides,16 sulfenimines to sulfinimines,17 and the epoxidation of alkenes.18... [Pg.168]

Until quite recently the isolation of optically active selenoxides has been limited to those contained in steroids (isolated as diastereoisomers). The difficulty in obtaining these compounds was attributed to the racemization through the achiral hydrated intermediates. Simple optically active selenoxides (5-11% ee) were first prepared by kinetic resolution. Direct oxidation of selenides to selenoxides was first reported using optically active oxaziridine derivatives under anhydrous conditions, but the extent of the asymmetric induction was somewhat unsatisfactory with methyl phenyl selenide as substrate (8-9% ee). Recently much improved enantiomeric excesses (45-73%) were achieved with new oxaziridine reagents such as (70). An attempt at the asymmetric oxidation of more bulky selenides was independently carried out using Bu OCl in the presence of (-)-2-octanol (equation 55),2 but resulted in unsatisfactory enantioselectivities (ee 1%). Much better results were obtained by the oxidation of P-oxyalkyl aryl selenides (ee 18-40% equation 56) and alkyl aryl selenides (ee 1-28%) 2S using TBHP in the presence of (+)- or (-)-diisopropyl tartarate (DIPT) and titanium(IV) alkoxide. [Pg.779]

Several oxaziridines related to (14) (eq 8) have been used, most notably in the enantioselective oxidation of sulfides to sulfoxides, of selenides to selenoxides, and of alkenes to oxiranes, It is also the reagent of choice for the hydroxylation of lithium and Grignard reagents and for the asymmetric oxidation of enolates to give a-hydroxy carbonyl compounds, - A similar chiral fluorinating reagent has also been developed, ... [Pg.177]

Selenoxides are useful intermediates in the preparation of a,3-unsat-urated carbonyl compounds and esters. The treatment of aldehydes, ketones, or esters with benzeneselenyl chloride, C6H5SeCl, followed by the oxidation of the selenides to selenoxides by hydrogen peroxide, peroxy acids, or sodium periodate, gives a,3-unsaturated aldehydes, ketones, or esters. Thus, dehydrogenation with the formation of a carbon-carbon double bond is accomplished under very mild conditions [167, 169] (equation 593). [Pg.265]

Table 9 Asymmetric oxidation of alkyl aryl selenides to selenoxides using (—)-A-(phenylsulfonyl) (3,3-dichlorocamphoryl)oxaziridine (69) at 0°C in CHCl3.a... Table 9 Asymmetric oxidation of alkyl aryl selenides to selenoxides using (—)-A-(phenylsulfonyl) (3,3-dichlorocamphoryl)oxaziridine (69) at 0°C in CHCl3.a...
The 2-sulfonyloxaziridine (57) is a more selective oxidant than peracids. The reagent has been employed in the oxidation of sulfides to sulfoxides, disulfides to thiolsulfinates, selenides to selenoxides, thiols to sulfenic acids, organometallic reagents to alcohols and phenols, ketone and ester enolates to a-hydroxycarbonyl compounds (equation 31)41. The oxidation of chiral amide enolates gives optically active a-hydroxy carboxylic acids with 93-99% enantiomeric excess42. [Pg.415]

Alcohols can be converted to o-nitrophenylselenides by reaction with o nitrophenyl selenocyanate and tri(rt-butylphosphine). Several oxidants have been employed to convert selenides to selenoxides and bring about elimination. Hydrogen peroxide, sodium metaperiodate, peroxycarboxylic acids, tert bnty hydroperoxide, and ozone have been used most frequently. [Pg.362]


See other pages where Selenides to selenoxides is mentioned: [Pg.332]    [Pg.332]    [Pg.757]    [Pg.770]    [Pg.772]    [Pg.770]    [Pg.772]    [Pg.500]    [Pg.8]    [Pg.27]    [Pg.31]    [Pg.46]    [Pg.572]    [Pg.386]    [Pg.387]    [Pg.448]    [Pg.757]    [Pg.772]    [Pg.437]    [Pg.438]    [Pg.140]   
See also in sourсe #XX -- [ Pg.770 ]




SEARCH



Selenoxide

Selenoxides

© 2024 chempedia.info