Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Secondary synthesis process, description

In this description we have made a clear distinction between growth and secondary product synthesis. You should, however, realise that the distinction is not quite so sharp in practice. Thus we might expect some, albeit a small amount, of secondary product formation in file trophophase and some growth of new cells replacing dead ones in the idiophase. Nevertheless, the separation of the process into two phases enables the optimisation of conditions for growth in one phase and the imposition of conditions which maximise production of antibiotic in the other. [Pg.161]

The scenario presented here was developed by R. Gygax [1, 2]. Let us assume that while the reactor is at the reaction temperature (TP), a cooling failure occurs (point 4 in Figure 3.2). The scenario consists of the description of the temperature evolution after the cooling failure. If, at the instant of failure, unconverted material is still present in the reactor, the temperature increases due to the completion of the reaction. This temperature increase depends on the amount of non-reacted material, thus on the process conditions. It reaches a level called the Maximum Temperature of the Synthesis Reaction (MTSR). At this temperature, a secondary decomposition reaction may be initiated. The heat produced by this reaction may... [Pg.61]

The transition metal catalyzed synthesis of arylamines by the reaction of aryl halides or tri-flates with primary or secondary amines has become a valuable synthetic tool for many applications. This process forms monoalkyl or dialkyl anilines, mixed diarylamines or mixed triarylamines, as well as N-arylimines, carbamates, hydrazones, amides, and tosylamides. The mechanism of the process involves several new organometallic reactions. For example, the C-N bond is formed by reductive elimination of amine, and the metal amido complexes that undergo reductive elimination are formed in the catalytic cycle in some cases by N-H activation. Side products are formed by / -hydrogen elimination from amides, examples of which have recently been observed directly. An overview that covers the development of synthetic methods to form arylamines by this palladium-catalyzed chemistry is presented. In addition to the synthetic information, a description of the pertinent mechanistic data on the overall catalytic cycle, on each elementary reaction that comprises the catalytic cycle, and on competing side reactions is presented. The review covers manuscripts that appeared in press before June 1, 2001. This chapter is based on a review covering the literature up to September 1, 1999. However, roughly one-hundred papers on this topic have appeared since that time, requiring an updated review. [Pg.107]

Description Natural gas or another hydrocarbon feedstock is compressed (if required), desulfurized, mixed with steam and then converted into synthesis gas. The reforming section comprises a prereformer (optional, but gives particular benefits when the feedstock is higher hydrocarbons or naphtha), a fired tubular reformer and a secondary reformer, where process air is added. The amount of air is adjusted to obtain an H2/N2 ratio of 3.0 as required by the ammonia synthesis reaction. The tubular steam reformer is Topsoe s proprietary side-wall-fired design. After the reforming section, the synthesis gas undergoes high- and low-temperature shift conversion, carbon dioxide removal and methanation. [Pg.10]

Description The key features of the KBR Purifier Process are mild primary reforming, secondary reforming with excess air, cryogenic purification of syngas, and synthesis of ammonia over magnetite catalyst in a horizontal converter. [Pg.13]

Description The gas feedstock is compressed (if required), desulfurized (1) and sent to a saturator (2) where process steam is generated. All process condensate is reused in the saturator resulting in a lower water requirement. The mixture of natural gas and steam is preheated and sent to the primary reformer (3). Exit gas from the primary reformer goes directly to an oxygen-blown secondary reformer (4). The oxygen amount and the balance between primary and secondary reformer are adjusted so that an almost stoichiometric synthesis gas with a low inert content is obtained. The primary reformer is relatively small and the reforming section operates at about 35 kg/cm2g. [Pg.101]


See other pages where Secondary synthesis process, description is mentioned: [Pg.151]    [Pg.95]    [Pg.163]    [Pg.65]    [Pg.195]    [Pg.495]    [Pg.14]    [Pg.433]    [Pg.160]    [Pg.393]    [Pg.51]    [Pg.17]    [Pg.18]    [Pg.42]    [Pg.4]    [Pg.243]    [Pg.393]    [Pg.385]   
See also in sourсe #XX -- [ Pg.420 ]

See also in sourсe #XX -- [ Pg.420 ]




SEARCH



Process description

Process synthesis

Processing synthesis

Secondary processes

Secondary processing

Secondary synthesis

© 2024 chempedia.info