Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Second quantization formalism occupation number

The occupation number vectors are basis vectors in an abstract linear vector space and specify thus only the occupation of the spin orbitals. The occupation number vectors contain no reference to the basis set. The reference to the basis set is built into the operators in the second quantization formalism. Observables are described by expectation values of operators and must be independent of the representation given to the operators and states. The matrix elements of a first quantization operator between two Slater determinants must therefore equal its counterpart of the second quantization formulation. For a given basis set the operators in the Fock space can thus be determined by requiring that the matrix elements between two occupation number vectors of the second quantization operator, must equal the matrix elements between the corresponding two Slater determinants of the corresponding first quantization operators. Operators that are considered in first quantization like the kinetic energy and the coulomb repulsion conserve the number of electrons. In the Fock space these operators must be represented as linear combinations of multipla of the ajaj... [Pg.46]

The dependence of the used orbital basis is opposite in first and second quantization. In first quantization, the Slater determinants depend on the orbital basis and the operators are independent of the orbital basis. In the second quantization formalism, the occupation number vectors are basis vectors in a linear vector space and contain no reference to the orbitals basis. The reference to the orbital basis is made in the operators. The fact that the second quantization operators are projections on the orbital basis means that a second quantization operator times an occupation number vector is a new vector in the Fock space. In first quantization an operator times a Slater determinant can normally not be expanded as a sum of Slater determinants. In first quantization we work directly with matrix elements. The second quantization formalism represents operators and wave functions in a symmetric way both are expressed in terms of elementary operators. This... [Pg.54]

In second-quantization formalism, operators in coordinate space are replaced by operators defined in the space of occupation numbers... [Pg.115]

Thus, Hj q describes directly the transition from the quasidiscrete state to fragments. According to second quantization formalism, it acts in an occupation-number space. [Pg.112]

In the occupation number representation within the second quantization formalism, which will be used here, the 1 -RDM takes the form ... [Pg.189]

Up to this point we have tailored the second-quantization formalism in close connection to the independent-particle picture introduced before. However, the formalism can be generalized in an even more abstract fashion. For this we introduce so-called occupation number vectors, which are state vectors in Fock space. Fock space is a mathematical concept that allows us to treat variable particle numbers (although this is hardly exploited in quantum chemistry see for an exception the Fock-space coupled-cluster approach mentioned in section 8.9). Accordingly, it represents loosely speaking all Hilbert spaces for different but fixed particle numbers and can therefore be formally written as a direct sum of N-electron Hilbert spaces. [Pg.300]

However, before going into a detailed discussion of various relativistic Hamiltonians we will introduce an alternative form of the electronic Hamiltonian (3.4), which is useful for wavefunction-based correlation methods. It is obtained by switching to a particle-hole formalism and then introducing normal ordering. In the second-quantization formalism creation and annihilation operators refer to some specific set of (orthononnal) orbitals, and Slater determinants in Hilbert space translate into occupation-number veetors in Fock space. The annihilation operators in equation 3.4 by definition give zero when acting on the vacuum state... [Pg.60]

In the usual formalism of quantum mechanics, the first quantization formalism, observables are represented by operators and the wave functions are normal functions. In the method of second quantization, the wave functions are also expressed in terms of operators. The formalism starts with the introduction of an abstract vector space, the Fock space. The basis vectors of the Fock space are occupation number vectors, with each vector defined by a set of occupation numbers (0 or 1 for fermions). An occupation number vector represents a Slater determinant with each occupation number giving the occupation of given spin orbital. Creation and annihilation operators that respectively adds and removes electrons are then introduced. Representations of usual operators are expressed in terms of the very same operators. [Pg.37]

The calculation of expectation values of operators over the wavefunction, expanded in terms of these determinants, involves the expansion of each determinant in terms of the N expansion terms followed by the spatial coordinate and spin integrations. This procedure is simplified when the spatial orbitals are chosen to be orthonormal. This results in the set of Slater Condon rules for the evaluation of one- and two-electron operators. A particularly compact representation of the algebra associated with the manipulation of determinantal expansions is the method of second quantization or the occupation number representation . This is discussed in detail in several textbooks and review articles - - , to which the reader is referred for more detail. An especially entertaining presentation of second quantization is given by Mattuck . The usefulness of this approach is that it allows quite general algebraic manipulations to be performed on operator expressions. These formal manipulations are more cumbersome to perform in the wavefunction approach. It should be stressed, however, that these approaches are equivalent in content, if not in style, and lead to identical results and computational procedures. [Pg.82]

Besides the apparent similarities. Table 8.1 illustrates also the obvious formal differences between bras and kets and their second quantized counterparts. Namely, the corresponding symbols are mathematically very different. The bra and ket vectors are elements of a linear vector space over which quantum-mechanical operators are defined, while the creation and annihilation operators are defined over the abstract space of particle number represented wave functions serving as their carrier space. This carrier space leads to the concept of the vacuum state, which has no analog in the bra-ket formalism. Moreover, an essential difference is that the effect of second quantized operators depends on the occupancies of the one-electron levels in the wave function, since no annihilation is possible from an empty level and no electron can be created on an occupied spinorbital. At the same time, the occupancies of orbitals play no role in evaluating bra and ket expressions. Of course, both formalisms yield identical results after calculating the values of matrix elements. [Pg.58]


See other pages where Second quantization formalism occupation number is mentioned: [Pg.460]    [Pg.1201]    [Pg.1201]    [Pg.115]    [Pg.34]   
See also in sourсe #XX -- [ Pg.46 ]




SEARCH



Occupancy numbers

Occupation number

Occupation-number formalism

Quantization

Quantized

Second quantization

© 2024 chempedia.info