Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Saturation horizon aragonite

The solubility of calcite and aragonite increases with increasing pressure and decreasing temperature in such a way that deep waters are undersaturated with respect to calcium carbonate, while surface waters are supersaturated. The level at which the effects of dissolution are first seen on carbonate shells in the sediments is termed the lysocline and coincides fairly well with the depth of the carbonate saturation horizon. The lysocline commonly lies between 3 and 4 km depth in today s oceans. Below the lysocline is the level where no carbonate remains in the sediment this level is termed the carbonate compensation depth. [Pg.292]

Saturation state of seawater, Cl, with respeot to (a) calcite and (b) aragonite as a function of depth. The dashed vertical line marks the saturation horizon. North Pacific profile is from 27.5°N 179.0°E (July 1993) and North Atlantio profile is from 24.5°N 66.0°W (August 1982) from CDIAC/WOCE database http //cdiac.esd.oml.gov/oceans/CDIACmap.html) Section P14N, Stn 70 and Section A05, Stn 84. Source From Zeebe, R.E. and D. Wolf-Gladrow (2001) Elsevier Oceanography Series, 65, Elsevier, p. 26. [Pg.395]

Depth in meters of the (a) aragonite and (b) calcite saturation horizons (fi = 1) in the global ooeans. Source-. After Feeley, R. A., et al. (2004). Science 305(5682), 362-366. (See oompanion website for oolor version.)... [Pg.396]

North Atlantic to 500 m in the North Pacific. This reflects an increasing addition of CO2 to deep waters as meridional overturning circulation moves them from the Atlantic to the Indian and then to the Pacific Ocean. Thus, as a water mass ages, it becomes more corrosive to calcium carbonate. Since aragonite is more soluble than calcite, its saturation horizon lies at shallower depths, rising from 3000 m in the North Atlantic to 200 m in the North Pacific. [Pg.396]

Based on thermodynamic considerations, sediments that lie at depths below the saturation horizon should have 0% CaCOj. This then explains why calcareous oozes are restricted to sediments lying on top of the mid-ocean ridges and rises and why the sediments of the North Pacific are nearly devoid of calcite and aragonite. (The low %CaCOj in the sediments of the continental margin is a result of dilution by terrestrial clay minerals.)... [Pg.396]

A significant fraction of the CO2 injected into the atmosphere as a result of fias-sil fuel burning is now dissolving into the surfece ocean. This is causing a decline in seawater pH and O,. A recent modeling effort, shown in Figure 15.13, predicts a precipitous rise in the aragonite saturation horizon by the year 2100, with surfece waters in... [Pg.396]

Aragonite saturation horizon prediotions for the year 2100. Vaiues mapped are A[C03 ] = [CO ] n situ - PO ]aragonite saturation hore positive A[C02-]a indicates supersaturation and... [Pg.397]

Feely R.A. and Chen C.-T. A. (1982) The effect of excess CO2 on the calculated calcite and aragonite saturation horizons in the northeast Pacific. Geophys. Res. Lett. 9, 1294-1297. [Pg.627]

Figure 5 Results of in situ dissolution experiments. Peterson (1966) re-weighed polished calcite spheres after a 250 d deployment on a mooring in the North Pacific. Honjo and Erez (1978) observed the weight loss for calcitic samples (coccoliths, foraminifera and reagent calcite) and an aragonitic sample (pteropods) held at depth for a period of 79 d. While Peterson hung his spheres directly in seawater, the Honjo-Erez samples were held in containers through which water was pumped. The results suggest that the calcite saturation horizon lies at 4,800 200 m in the North Atlantic and at about 3,800 200 m in the North Pacific. For aragonite, which is 1.4 times more soluble than calcite, the saturation horizon in the North Atlantic is estimated to be in the range 3,400 200 m. Figure 5 Results of in situ dissolution experiments. Peterson (1966) re-weighed polished calcite spheres after a 250 d deployment on a mooring in the North Pacific. Honjo and Erez (1978) observed the weight loss for calcitic samples (coccoliths, foraminifera and reagent calcite) and an aragonitic sample (pteropods) held at depth for a period of 79 d. While Peterson hung his spheres directly in seawater, the Honjo-Erez samples were held in containers through which water was pumped. The results suggest that the calcite saturation horizon lies at 4,800 200 m in the North Atlantic and at about 3,800 200 m in the North Pacific. For aragonite, which is 1.4 times more soluble than calcite, the saturation horizon in the North Atlantic is estimated to be in the range 3,400 200 m.

See other pages where Saturation horizon aragonite is mentioned: [Pg.397]    [Pg.3130]    [Pg.3130]    [Pg.3522]    [Pg.338]   
See also in sourсe #XX -- [ Pg.397 ]




SEARCH



Aragonite

© 2024 chempedia.info