Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium addition reactions

Recently, on the basis of the Markovnikov addition of water to alkynes, Trost et al. developed a three-component addition reaction of terminal alkynes, water, and methyl vinyl ketone, affording 1,5-diketones in DMF/water in the presence of ruthenium and indium catalysts (Eq. 4.38). [Pg.118]

In addition to aryl halides and triflates, organometallic reagents can be utilized for the catalytic arylation reaction. The rhodium-catalyzed arylation of arylpyridines proceeds with the use of tetraarylstannanes (Equation (67)).83 The ruthenium-catalyzed reaction of aromatic ketones with arylboronates affords the ortho-arylated aromatic ketones (Equation (68)).84... [Pg.229]

In order to get a catalytic cycle it is necessary that the metal sulfide intermediate can react with hydrogen to form the reduced metal complex (or compound) and H2S. For highly electropositive metals (non-noble metals) this is not possible for thermodynamic reasons. The co-ordination chemistry and the oxidative addition reactions that were reported mainly involved metals such as ruthenium, iridium, platinum, and rhodium. [Pg.55]

CEJ1358> and the ruthenium mediated isomerization of double bonds (cf. Scheme 89, Section 8.11.7) <2007TL137> are recent examples of transition metal catalyzed manipulations at the side chain carbon atoms of 1,3-heterocycles. A novel side-chain addition reaction of aldehydes to 6-alkylidene-l,3-dioxin-4-ones was used for the construction of intermediates of lophotoxin <2006CJC1226>. An acid-catalyzed intramolecular cycloaddition of a hydroxy group to an alkene has been effected by the presence of an adjacent 1,3-dithiane moiety <2006TL4549>. [Pg.838]

In spite of the abundant work on this type of reactivity, no rate constants for the addition reactions had been obtained, with the exception of the [M(CN)5NO]2 ions (M = Fe,Ru,Os) (55,68), until the recently published kinetic measurements for a representative set of nitrosyl complexes MX5NO (M = mainly ruthenium) (51). Table III... [Pg.81]

The polarisation produced by co-ordination to the metal may be transmitted through a conjugated system. Michael addition reactions of nucleophiles to TV-bonded acrylonitrile are known, and provide a convenient method for the preparation of derivatives. A wide range of nucleophiles may be used in these conjugate additions. For example, the anion of nitromethane (generated in situ) reacts with the ruthenium(m) complex [Ru(NH3)5N=CCH=CH2)]3+, 4.6, to yield a complex of 4-nitrobutyronitrile (Fig. 4-18). [Pg.71]

Grignard additions, 9, 59, 9, 64 indium-mediated allylation, 9, 687 in nickel complexes, 8, 150 ruthenium carbonyl reactions, 7, 142 ruthenium half-sandwiches, 6, 478 and selenium electrophiles, 9, W11 4( > 2 in vanadocene reactions, 5, 39 Nitrites, with trinuclear Os clusters, 6, 733 Nitroalkenes, Grignard additions, 9, 59-60 Nitroarenes, and Grignard reactivity, 9, 70 Nitrobenzenes, reductive aminocarbonylation, 11, 543... [Pg.156]

In (C5Me5)Rh(C2H3SiMe3)2-catalyzed C-H/olefin coupling the effect of the coordination of the ketone carbonyl is different from that in the ruthenium-catalyzed reaction [10], In the rhodium-catalyzed reaction all C-H bonds on the aromatic ring are cleaved by the rhodium complex without coordination of the ketone carbonyl. Thus, C-H bond cleavage and addition of Rh-H to olefins proceed without coordination of the ketone carbonyl. After addition of the Rh-H species to the olefin, a coordinatively unsaturated Rh(aryl) (alkyl) species should be formed. Coordination of the ketone carbonyl group to the vacant site on the rhodium atom leads... [Pg.168]

A recent study showed that 152 behaves mechanistically different from other catalysts in addition reactions of more activated halides 140, such as trichloroacetate to styrene [222]. After initial reduction to Ru(II), chlorine abstraction from substrates 140 is in contrast to all other ruthenium complexes not the rate limiting step (cf. Fig. 36). ESR spectroscopic investigations support this fact. The subsequent addition to styrene becomes rate limiting, while the final ligand transfer step is fast and concentration-independent. For less activated substrates 140, however, chlorine abstraction becomes rate-determining again. Moreover, the Ru(III) complex itself can enter an, albeit considerably slower Ru(III)-Ru(IV) Kharasch addition cycle, when the reaction was performed in the absence of magnesium. This cycle operates, however, for only the most easily reducible halides, such as trichloroacetate. [Pg.235]

Fig. 39 Ruthenium-catalyzed radical addition reactions to titanate enolates... Fig. 39 Ruthenium-catalyzed radical addition reactions to titanate enolates...
Interestingly, the reaction of active methylene compounds having a nitrile group with a,/l-unsaturated carbonyl compounds give Michael adducts without contamination by the corresponding aldol products (Eq. 61) [89-92]. Murahashi and coworkers [89-91] proposed that the addition of the C-H bond to a low-valent ruthenium constitutes the initial step. Recently, Takaya and Murahashi [94] applied their aldol and Michael addition reactions to solid-phase synthesis using polymer-supported nitriles. [Pg.73]

The Kharasch addition reactions promoted by [RuCl2(PPh3)3] are believed to proceed through a redox chain mechanism (Eqs. 1-3) [ 16]. Their kinetics show a first-order dependence both on the ruthenium complex and on CC14. Whereas no clear-cut evidence for alkene coordination to the metal was found with catalyst precursor 1 (which readily loses one phosphine ligand), olefin coordination cannot be excluded because there is a saturation kinetic rate dependence on the alkene. This observation led to the proposal of a reversible step involving olefin coordination to the metal center [ 16,19,20]. Recent work with other ruthenium-based catalysts further supports olefin coordination (see later). [Pg.159]

Consiglio and Morandini and co-workers (67) have investigated the stereochemistry involved in the addition of acetylenes to chiral ruthenium complexes. Reaction of propyne with the separated epimer of the chiral ruthenium phosphine complex 34 at room temperature results in the chemo- and stereospecific formation of the respective propylidene complex 64. An X-ray structure of the product (64) proves that the reaction proceeds with retention of configuration at the ruthenium center. The identical reaction utilizing the epimer with the opposite configuration at ruthenium (35) also proceeded with retention of configuration at the metal center, proving that the stereospecificity of the reaction in not under thermodynamic control [Eq. (62)]. [Pg.35]

Complex 3c, a catalytic precursor for addition reactions to alkynes (65), reacts at room temperature with a variety of terminal alkynes in alcohols to produce stable alkoxyl alkyl carbene ruthenium(II) derivatives 109 in good yields (Scheme 7). Reaction of 3c (L = PMe3), with trimethylsilyacetylene in methanol gives the carbene ruthenium complex 110, by protonolysis of the C—Si bond, whereas with 4-hydroxy-l-butyne in methanol the cyclic carbene complex 111 is obtained (65,66). [Pg.183]


See other pages where Ruthenium addition reactions is mentioned: [Pg.166]    [Pg.24]    [Pg.112]    [Pg.114]    [Pg.183]    [Pg.58]    [Pg.243]    [Pg.565]    [Pg.159]    [Pg.197]    [Pg.412]    [Pg.33]    [Pg.324]    [Pg.57]    [Pg.79]    [Pg.209]    [Pg.591]    [Pg.592]    [Pg.753]    [Pg.73]    [Pg.119]    [Pg.15]    [Pg.238]    [Pg.237]    [Pg.398]    [Pg.46]    [Pg.47]    [Pg.74]    [Pg.75]    [Pg.159]    [Pg.162]    [Pg.174]    [Pg.179]   
See also in sourсe #XX -- [ Pg.421 ]

See also in sourсe #XX -- [ Pg.421 ]

See also in sourсe #XX -- [ Pg.421 ]

See also in sourсe #XX -- [ Pg.97 , Pg.421 ]




SEARCH



Ruthenium complexes, reactions phosphorus ligand, addition

Ruthenium electrophilic addition reactions

Ruthenium nucleophilic addition reactions

Ruthenium reactions

© 2024 chempedia.info