Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Roothaan-Hall equations closed-shell systems

Closed-shell Systems and the Roothaan-Hall Equations... [Pg.76]

We shall initially consider a closed-shell system with N electroris in N/2 orbitals. The derivation of the Hartree-Fock equations for such a system was first proposed by Roothaan [Roothaan 1951] and (independently) by Hall [Hall 1951]. The resulting equations are known as the Roothaan equations or the Roothaan-Hall equations. Unlike the integro-differential form of the Hartree-Fock equations. Equation (2.124), Roothaan and Hall recast the equations in matrix form, which can be solved using standard techniques and can be applied to systems of any geometry. We shall identify the major steps in the Roothaan approach. [Pg.76]

Multiplying from the left by a specific basis function and integrating yields the Roothaan-Hall equations (for a closed shell system). These are the Fock equations in the atomic orbital basis, and all the M equations may be collected in a matrix notation. [Pg.65]

Pople-Nesbet Equations. The set of equations describing the best Unrestricted Single Determinant Wavefunction within the LCAO Approximation. These reduce the Roothaan-Hall Equations for Closed Shell (paired electron) systems. [Pg.767]

To assign values to the molecular orbital coefficients, c, many computational methods apply Hartree-Fock theory (which is based on the variational method).44 This uses the result that the calculated energy of a system with an approximate, normalized, antisymmetric wavefunction will be higher than the exact energy, so to obtain the optimal wavefunction (of the single determinant type), the coefficients c should be chosen such that they minimize the energy E, i.e., dEldc = 0. This leads to a set of equations to be solved for cMi known as the Roothaan-Hall equations. For the closed shell case, the equations are... [Pg.310]

All quantum chemical calculations are based on the self-consistent field (SCF) method of Hatree and Fock (1928-1930) and the MO theory of Hund, Lennard-Jones, and Mulliken (1927-1929). A method of obtaining SCF orbitals for closed shell systems was developed independently by Roothaan and Hall in 1951. In solving the so-called Roothan equations, ab initio calculations, in contrast to semiempirical treatments, do not use experimental data other than the values of the fundamental physical constants. [Pg.34]

The Roothaan-Hall equations are not applicable to open-shell systems, which contain one or more unpaired electrons. Radicals are, by definition, open-shell systems as are some ground-state molecules such as NO and 02. Two approaches have been devised to treat open-shell systems. The first of these is spin-restricted Hartree-Fock (RHF) theory, which uses combinations of singly and doubly occupied molecular orbitals. The closed-shell approach that we have developed thus far is a special case of RHF theory. The doubly occupied orbitals use the same spatial functions for electrons of both a and spin. The orbital expansion Equation (2.144) is employed together with the variational method to derive the optimal values of the coefficients. The alternative approach is the spin-unrestricted Hartree-Fock (UHF) theory of Pople and Nesbet [Pople and Nesbet 1954], which uses two distinct sets of molecular orbitals one for electrons of a spin and the other for electrons of / spin. Two Fock matrices are involved, one for each type of spin, with elements as follows ... [Pg.108]


See other pages where Roothaan-Hall equations closed-shell systems is mentioned: [Pg.107]    [Pg.128]    [Pg.170]    [Pg.87]    [Pg.186]   


SEARCH



Closed shell

Closed-shell systems

Equations systems

Hall

Roothaan

Roothaan equations

Roothaan-Hall equations

© 2024 chempedia.info