Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Robinson annulation reaction examples

Davis and co-workers have carried out the first examples of the Knoevenagel condensation and Robinson annulation reactions [61] in the ionic liquid [HMIM][PFg] (HMIM = l-hexyl-3-methylimidazolium) (Scheme 5.1-33). The Knoevenagel condensation involved the treatment of propane-1,3-dinitrile with a base (glycine) to generate an anion. This anion added to benzaldehyde and, after loss of a water molecule, gave l,l-dicyano-2-phenylethene. The product was separated from the ionic liquid by extraction with toluene. [Pg.189]

Carbonyl condensation reactions are perhaps the most versatile methods available for synthesizing complex molecules. By putting a few fundamental reactions together in the proper sequence, some remarkably useful transformations can be carried out. One such example is the Robinson annulation reaction for tire synthesis of polycyclic molecules. The word annulation comes from the Latin annulus, meaning "ring," so an annulation reaction builds a new ring onto a molecule. [Pg.899]

Scheme 2.11 shows some examples of Robinson annulation reactions. Entries 1 and 2 show annulation reactions of relatively acidic dicarbonyl compounds. Entry 3 is an example of use of 4-(trimethylammonio)-2-butanone as a precursor of methyl vinyl ketone. This compound generates methyl vinyl ketone in situ by (3-eliminalion. The original conditions developed for the Robinson annulation reaction are such that the ketone enolate composition is under thermodynamic control. This usually results in the formation of product from the more stable enolate, as in Entry 3. The C(l) enolate is preferred because of the conjugation with the aromatic ring. For monosubstituted cyclohexanones, the cyclization usually occurs at the more-substituted position in hydroxylic solvents. The alternative regiochemistry can be achieved by using an enamine. Entry 4 is an example. As discussed in Section 1.9, the less-substituted enamine is favored, so addition occurs at the less-substituted position. [Pg.136]

A particularly important example is the Robinson annulation, a procedure which constructs a new six-membered ring from a ketone.83 84 The reaction sequence starts with conjugate addition of the enolate to methyl vinyl ketone or a similar enone. This is followed by cyclization involving an intramolecular aldol addition. Dehydration frequently occurs to give a cyclohexenone derivative. Scheme 2.10 shows some examples of Robinson annulation reactions. [Pg.89]

Aldol reactions are often used to close five- and six-membered rings. Because of the favorable entropy (p. 211), such ring closures generally take place with ease, even where a ketone condenses with a ketone. An important example is the Robinson annulation reaction which has often been used in the synthesis of steroids and terpenes. In this reaction a cyclic ketone is converted to another cyclic ketone, with one additional six-membered ring containing a double bond. The substrate is treated with methyl vinyl ketone (or a simple derivative of methyl vinyl ketone) and a base.551 The enolate ion of the substrate adds to the methyl vinyl ketone in a Michael reaction (5-17) to give a diketone that undergoes or... [Pg.943]

Carbonyl condensation reactions are widely used in synthesis. One example of their versatility is the Robinson annulation reaction, which leads to the formation of substituted cyclohexanones. Treatment of a i dikotone or -keto ester u-itb an o,fi-unsaturated ketone leads first tu a Mie nael addition, which is followed by intramolecular aldol cycUaatinn. Condensation reactions are also used widely in nature for the bionyntbesis of such molecules as fats and steroids. [Pg.963]

Total syntheses of diterpenoid hydrokempenones have been accomplished by Paquette et al.,f using the Pd-catalyzed [3 + 2] cycloaddition methodology. One example is outlined on Scheme 43 and describes the synthesis of an isomeric compound 208 of 3/3-hydroxy-7/3-kemp-8(9)-en-6-one, a defense secretion agent of the neotropical species Nasutitermes octopilis. 3-AUcoxy-2-cyclohexenone 204 was efficiently functionalized and transformed to bicylic adduct 205 via a Robinson annulation reaction. Reduction of the double bond followed by condensation of dimethyl carbonate and oxidation gave the keto ester 206, which was treated with [2-(acetoxymethyl)-3-allyl]trimethylsilane, palladium acetate, and triisopropyl phosphite in refluxing tetrahydrofuran to afford a 98% yield of 207. Substituted methylenecyclopentane 207 was then functionalized by stereoselective reduction and protections, and final closure was done under basic conditions after an ozonolysis step. A modified Barton-McCombie reaction produced the desired tetracyclic adduct 208. [Pg.431]

As we saw in Chapter 1, Michael additions to a,jS-unsaturated ketones occur best when the nucleophile is only weakly basic. In entries 1 and 2 of Scheme 2.2, we note examples of Robinson annulation reactions in which the nucleophiles are derived by deprotonation of a /3-diketone and a /3-keto ester, respectively. The Michael acceptor is methyl vinyl ketone in entry 1 and is ethyl vinyl ketone in... [Pg.47]

The first step of the Robinson annulation is simply a Michael reaction. An enamine or an enolate ion from a jS-keto ester or /3-diketone effects a conjugate addition to an a-,/3-unsaturated ketone, yielding a 1,5-diketone. But as we saw in Section 23.6,1,5-diketones undergo intramolecular aldol condensation to yield cyclohexenones when treated with base. Thus, the final product contains a six-membered ring, and an annulation has been accomplished. An example occurs during the commercial synthesis of the steroid hormone estrone (figure 23.9). [Pg.899]

In this example, the /3-diketone 2-methyJ-l,3-cyclopentanedione is used to generate the enolate ion required for Michael reaction and an aryl-substituted a,/3-unsaturated ketone is used as the acceptor. Base-catalyzed Michael reaction between the two partners yields an intermediate triketone, which then cyclizes in an intramolecular aldol condensation to give a Robinson annulation product. Several further transformations are required to complete the synthesis of estrone. [Pg.899]

While this example of the Robinson annulation is clearly not enantioselec-tive, the same antibody converts the mero-ketone [120] into the Wieland-Miescher (WM) decalenedione product kcM = 0.086 min-1 and Km = 2.34 mM at 25°C, parameters that give an impressive ER of 3.6 x 106. Good evidence suggests that the mechanism of the reaction involves the formation of a ketimine with the e-amino group of a buried lysine residue in the antibody, as shown in Fig. 39. Most significantly, the reaction delivers the ( )-(+)-WM product in 96% ee (by polarimetry) and in 95% ee by nmr and hplc analysis for a 100 mg scale reaction. A recent report tells that this antibody is to be made commercially available at a cost of 100 for 10 mg. The realization of that objective would mark the start of a new era of application of abzymes to organic stereoselective synthesis. [Pg.303]

Strategies based on two consecutive specific reactions or the so-called "tandem methodologies" very useful for the synthesis of polycyclic compounds. Classical examples of such a strategy are the "Robinson annulation" which involves the "tandem Michael/aldol condensation" [32] and the "tandem cyclobutene electrocyclic opening/Diels-Alder addition" [33] so useful in the synthesis of steroids. To cite a few new methodologies developed more recently we may refer to the stereoselective "tandem Mannich/Michael reaction" for the synthesis of piperidine alkaloids [34], the "tandem cycloaddition/radical cyclisation" [35] which allows a quick assembly of a variety of ring systems in a completely intramolecular manner or the "tandem anionic cyclisation approach" of polycarbocyclic compounds [36]. [Pg.333]

A rather nice example of enolate anion chemistry involving the Michael reaction and the aldol reaction is provided by the Robinson annulation, a ring-forming sequence used in the synthesis of steroidal systems (Latin annulus, ring). [Pg.398]

The use of a-thiophenyl enones (106 Scheme 12) allows the preparation of phenols such as (107) from cyclic ketones (18).30 The same product can also be obtained by normal Robinson annulation of methyl vinyl ketone (30) and the p-keto sulfoxide (lOS).30 Acceptors other than a, 3-unsaturated carbonyls have been used in both the Michael reaction and the Robinson annulation process. For example, nu-... [Pg.8]

The Michael reaction in combination with an aldol condensation provides a useful method for the construction of six-membered rings in a process termed the Robinson annulation. In the following example a tertiary amine is used as the base to catalyze the conjugate addition. Then, treatment with sodium hydroxide causes an intramolecular aldol condensation to occur. [Pg.896]

This is an example of a Robinson annulation. The mechanism for the Robinson annulation involves a sequence of conjugate addition reactions and aldol condensations. As illustrated, the first step is deprotonation of cyclohexanedione with sodium hydride. The resulting anion then participates in a 1,4-addition to methyl vinyl ketone. The resulting enolate anion then tautomerizes through... [Pg.266]


See other pages where Robinson annulation reaction examples is mentioned: [Pg.543]    [Pg.899]    [Pg.156]    [Pg.293]    [Pg.609]    [Pg.797]    [Pg.609]    [Pg.346]    [Pg.61]    [Pg.63]    [Pg.690]    [Pg.184]    [Pg.31]    [Pg.587]    [Pg.130]    [Pg.283]    [Pg.1088]    [Pg.14]    [Pg.959]   
See also in sourсe #XX -- [ Pg.137 , Pg.138 ]




SEARCH



Annulation reactions

Examples reaction

Robinson

Robinson annulation

Robinson annulation reaction

Robinson reaction

© 2024 chempedia.info