Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rheo-NMR Fundamentals

Mechanical rheometry requires a measurement of both stress and strain (or strain rate) and is thus usually performed in a simple rotating geometry configuration. Typical examples are the cone-and-plate and cylindrical Couette devices [1,14]. In stress-controlled rheometric measurements one applies a known stress and measures the deformational response of the material. In strain-controlled rheometry one applies a deformation flow and measures the stress. Stress-controlled rheometry requires the use of specialized torque transducers in conjunction with low friction air-bearing drive in which the control of torque and the measurement of strain is integrated. By contrast, strain-controlled rheometry is generally performed with a motor drive to rotate one surface of the cell and a separate torque transducer to measure the resultant torque on the other surface. [Pg.185]

While it is possible to perform rheo-NMR in large scale MRI systems, the use of microscopic geometries with sub-millilitre volumes is highly desirable, especially where expensive speciality materials are to be examined. Such sample volumes [Pg.186]

We will now describe the basic hydrodynamic relationships applicable in the case of steady-state flow in which the Eulerian velocity field is time-independent and written as v(r). Here the rate of strain elements are given by [1] [Pg.187]

Simple shear (also known as planar Couette flow) is achieved when fluid is contained between two plane parallel plates in relative in-plane motion. If the velocity direction is taken to be x, one has x = y, all other xa 3 zero and [Pg.187]

The coordinates (x, y, z) define the (velocity, gradient, vorticity) axes, respectively. For non-Newtonian viscoelastic liquids, such flow results not only in shear stress, but in anisotropic normal stresses, describable by the first and second normal stress differences (oxx-Oyy) and (o - ozz). The shear-rate dependent viscosity and normal stress coefficients are then [1] [Pg.188]


See other pages where Rheo-NMR Fundamentals is mentioned: [Pg.185]   


SEARCH



Rheo-NMR

© 2024 chempedia.info