Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversibility allyl rearrangement

Substituted TMM complexes also cycloadd to aldehydes in the presence of a tin cocatalyst such as MesSnOAc and MesSnOTs [31]. Reaction of 2-heptenal with methyl precursor (6) gave a mixture of methylenetetrahydrofurans (68) and (69). This regioselectivity is reversed with 10-undecenal and methyl precursor (5), where adduct (70) now predominates over (71). As in the carbocyclic system, the phenylthio group also functions as a regiocontrol element in reaction with cyclohexyl aldehyde. The initially formed adduct (72) eliminates the element of thio-phenol on attempted allyl rearrangement, and the overall process becomes a cycloaddition approach to furans (Scheme 2.21) [20]. [Pg.72]

Although the interception of allylic sulfenates in the manner described by equation 11 was first observed by Abbott and Stirling ", the general value of this transformation and its remarkable synthetic potential has been recognized by Evans and coworkers , who have also introduced the previously used trimethyl phosphite as a preferable trapping agent. An early review of the synthetic utility of the reversible allylic sulfoxide-sulfenate rearrangement has also been published by Evans and Andrews . [Pg.724]

Estimating stability it is possible to apply criteria commonly used in organic chemistry. Tertiary alkyl carbocation is more stable than the secondary one which is in its turn more stable than the primary one. For the carbon ions of this type the row of the stability is reversed. Allyl and benzyl cations are stable due to the resonance stabilization. The latter having four resonance structures may rearrange to be energetically favorable in the gas phase tropilium cation possessing seven resonance forms (Scheme 5.3). [Pg.138]

As a conseqnence of their superior stability, many types of allylic boronates can be isolated and purified. It should be noted that most pinacol allylic boronic esters and other bnlky esters are stable to hydrolysis and can be conveniently pnrified by chromatography on silica gel. A potential pitfall of all allylic boron componnds is their stereochemical integrity, and snbstituted allylic boranes are known to nndergo reversible borotropic rearrangements at temperatures above —45° (see Eq. 12, M = Eor this reason, allylic boranes are nor-... [Pg.20]

The disconnection for the aromatic Claisen is to reverse the rearrangement. This is a little simpler than those we have seen so far as one C-C bond is broken 59 and one C-0 bond made. But you must remember to turn the allylic system back to front. This is easily seen if the starting material is drawn as 59a with the dotted line representing a reconnection. The rest is a normal ether disconnection. [Pg.265]

Early kinetic work127 showed that the formation of both ortho and para products was a first-order process and that the rates of reaction were insensitive to added acid or base and to change of solvent. The activation parameters were of the same order of magnitude for both reactions and the suggestion was made that both had a similar rate-determining step. Schmid et a/.128 showed that the formation of a dienone intermediate in the para rearrangement was also reversible since the radioactivity from allyl 2,6-dimethyl-4-allyl-y-14C phenyl ether LXXXVII became uniformly distributed in the y carbon atoms of the O- and C-allyl groups... [Pg.469]

Parallel and reversible reactions. The isomerization of allyl phenyl sulfide is a degenerate rearrangement made detectable by isotopic labeling of one end of the allyl group, permitting kinetic monitoring by NMR techniques.12... [Pg.65]

B. The Reversible [2,3]-Sigmatropic Rearrangement of Allylic Sulfenates to Sulfoxides... [Pg.720]

Since its discovery two decades ago, the reversible interconversion of allylic sulfenates to sulfoxides has become one of the best known [2,3]-sigmatropic rearrangements. Certainly this is not only because of the considerable mechanistic and stereochemical interest involved, but also because of its remarkable synthetic utility as a key reaction in the stereospecific total synthesis of a variety of natural products such as steroids, prostaglandins, leukotrienes, etc. [Pg.720]

Owing to the reversible nature of the allylic sulfenate/allylic sulfoxide interconversion, the stereochemical outcome of both processes is treated below in an integrated manner. However, before beginning the discussion of this subject it is important to point out that although the allylic sulfoxide-sulfenate rearrangement is reversible, and although the sulfenate ester is usually in low equilibrium concentration with the isomeric sulfoxide, desulfurization of the sulfenate by thiophilic interception using various nucleophiles, such as thiophenoxide or secondary amines, removes it from equilibrium, and provides a useful route to allylic alcohols (equation 11). [Pg.724]

In addition to the synthetic applications related to the stereoselective or stereospecific syntheses of various systems, especially natural products, described in the previous subsection, a number of general synthetic uses of the reversible [2,3]-sigmatropic rearrangement of allylic sulfoxides are presented below. Several investigators110-113 have employed the allylic sulfenate-to-sulfoxide equilibrium in combination with the syn elimination of the latter as a method for the synthesis of conjugated dienes. For example, Reich and coworkers110,111 have reported a detailed study on the conversion of allylic alcohols to 1,3-dienes by sequential sulfenate sulfoxide rearrangement and syn elimination of the sulfoxide. This method of mild and efficient 1,4-dehydration of allylic alcohols has also been shown to proceed with overall cis stereochemistry in cyclic systems, as illustrated by equation 25. The reaction of trans-46 proceeds almost instantaneously at room temperature, while that of the cis-alcohol is much slower. This method has been subsequently applied for the synthesis of several natural products, such as the stereoselective transformation of the allylic alcohol 48 into the sex pheromone of the Red Bollworm Moth (49)112 and the conversion of isocodeine (50) into 6-demethoxythebaine (51)113. [Pg.731]


See other pages where Reversibility allyl rearrangement is mentioned: [Pg.24]    [Pg.180]    [Pg.24]    [Pg.180]    [Pg.724]    [Pg.724]    [Pg.725]    [Pg.729]    [Pg.724]    [Pg.725]    [Pg.729]    [Pg.607]    [Pg.105]    [Pg.1055]    [Pg.1339]    [Pg.1339]    [Pg.112]    [Pg.1337]    [Pg.75]    [Pg.489]    [Pg.180]    [Pg.449]    [Pg.41]    [Pg.2705]    [Pg.155]    [Pg.155]    [Pg.651]    [Pg.149]    [Pg.245]    [Pg.653]    [Pg.468]    [Pg.65]    [Pg.678]    [Pg.717]    [Pg.720]    [Pg.724]    [Pg.727]    [Pg.1103]    [Pg.438]    [Pg.27]    [Pg.65]    [Pg.678]   
See also in sourсe #XX -- [ Pg.6 ]




SEARCH



Allyl rearrangement

Allylic rearrangement

Rearrangement reversibility

© 2024 chempedia.info