Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Residence-time distribution from response data

A distinc tion is to be drawn between situations in which (1) the flow pattern is known in detail, and (2) only the residence time distribution is known or can be calculated from tracer response data. Different networks of reactor elements can have similar RTDs, but fixing the network also fixes the RTD. Accordingly, reaction conversions in a known network will be unique for any form of rate equation, whereas conversions figured when only the RTD is known proceed uniquely only for hnear kinetics, although they can be bracketed in the general case. [Pg.2087]

The variance approach may also be used to determine n. From Illustration 11.2 the variance of the response data based on dimensionless time is 30609/(374.4)2, or 0.218. From equation 11.1.76 it is evident that n is 4.59. Thus the results of the two approaches are consistent. However, a comparison of the F(t) curves for n = 4 and n = 5 with the experimental data indicates that these approaches do not provide very good representations of the data. For the reactor network in question it is difficult to model the residence time distribution function in terms of a single parameter. This is one of the potential difficulties inherent in using such simple models of reactor behavior. For more advanced methods of modeling residence time effects, consult the review article by Levenspiel and Bischoff (3) and textbooks written by these authors (2, 4). [Pg.408]

The extent of gas dispersion can usually be computed from experimentally measured gas residence time distribution. The dual probe detection method followed by least square regression of data in the time domain is effective in eliminating error introduced from the usual pulse technique which could not produce an ideal Delta function input (Wu, 1988). By this method, tracer is injected at a point in the fast bed, and tracer concentration is monitored downstream of the injection point by two sampling probes spaced a given distance apart, which are connected to two individual thermal conductivity cells. The response signal produced by the first probe is taken as the input to the second probe. The difference between the concentration-versus-time curves is used to describe gas mixing. [Pg.127]

Experimental data on exit-age or residence-time distributions most often take the form of discrete values of tracer concentration measured at successive time intervals after introduction of the tracer. Thus, the integrals involved can be replaced by summations in the analysis of actual data. We will illustrate the procedure for the analysis of a pulse-response experiment. Available are tracer concentrations in the effluent, C t) and corresponding times, and from these data we would like to determine the exit-age distribution, or E 0)d6, the distribution in terms of the residencetime variable 6. First determine E t) from C t) versus t by... [Pg.241]


See other pages where Residence-time distribution from response data is mentioned: [Pg.222]    [Pg.51]    [Pg.114]    [Pg.374]    [Pg.782]   
See also in sourсe #XX -- [ Pg.248 ]




SEARCH



Data distribution

Distributing Responsibilities

Distribution response

Residence distribution

Residence time distribution

Response data

Time response

© 2024 chempedia.info