Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation fractional derivatives diffusion equation

Another most important question in anomalous dielectric relaxation is the physical interpretation of the parameters a and v in the various relaxation formulas and what are the physical conditions that give rise to these parameters. Here we shall give a reasonably convincing derivation of the fractional Smoluckowski equation from the discrete orientation model of dielectric relaxation. In the continuum limit of the orientation sites, such an approach provides a justification for the fractional diffusion equation used in the explanation of the Cole-Cole equation. Moreover, the fundamental solution of that equation for the free rotator will, by appealing to self-similarity, provide some justification for the neglect of spatial derivatives of higher order than the second in the Kramers-Moyal expansion. In order to accomplish this, it is first necessary to explain the concept of the continuous-time random walk (CTRW). [Pg.294]

The fact that the temporal occurrence of the motion events performed by the random walker is so broadly distributed that no characteristic waiting time exists has been exploited by a number of investigators [7,19,31] in order to generalize the various diffusion equations of Brownian dynamics to explain anomalous relaxation phenomena. The resulting diffusion equations are called fractional diffusion equations because in general they will involve fractional derivatives of the probability density with respect to the time. For example, in fractional noninertial diffusion in a potential, the diffusion Eq. (5) becomes [7,31]... [Pg.297]

We shall now almost exclusively concentrate on the fractal time random walk excluding inertial effects and the discrete orientation model of dielectric relaxation. We shall demonstrate how in the diffusion limit this walk will yield a fractional generalization of the Debye-Frohlich model. Just as in the conventional Debye relaxation, a fractional generalization of the Debye-Frohlich model may be derived from a number of very different models of the relaxation process (compare the approach of Refs. 22, 23, 28 and 34—36). The advantage of using an approach based on a kinetic equation such as the fractional Fokker-Planck equation (FFPE) however is that such a method may easily be extended to include the effects of the inertia of the dipoles, external potentials, and so on. Moreover, the FFPE (by use of a theorem of operational calculus generalized to fractional exponents and continued fraction methods) clearly indicates how many existing results of the classical theory of the Brownian motion may be extended to include fractional dynamics. [Pg.299]


See other pages where Relaxation fractional derivatives diffusion equation is mentioned: [Pg.587]    [Pg.305]    [Pg.419]    [Pg.421]    [Pg.745]    [Pg.324]   


SEARCH



Derivatives equations

Derivatives fractional diffusion equations

Deriving Relaxation Equations

Diffusion derivation

Diffusion equations

Diffusion relaxation

Equation derivation

Equation fractional diffusion

Relaxation equation

Relaxation equations derivation

© 2024 chempedia.info