Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Regioselectivity inversion

The chemistry of sulfur compounds is replete with beautiful examples of regioselectivity inversions,28 but unfortunately not all of them can be explained by FO theory. [Pg.116]

The regioselective and stereospecific construction of C-20 stereochemistry is explained by the following mechanism. The Pd(0) species attacks the ( )-/3-carbonate 616 from the a-side by inversion to form the Tr-allylpalladium species 620, which has a stable syn structure[392]. Then concerted decarboxylation-hydride transfer as in 621 takes place from the a-side to give the unnatural configuration in 617. On the other hand, the Tr-allylpalladium complex 622... [Pg.374]

The Pd-catalyzed hydrogenolysis of vinyloxiranes with formate affords homoallyl alcohols, rather than allylic alcohols regioselectively. The reaction is stereospecific and proceeds by inversion of the stereochemistry of the C—O bond[394,395]. The stereochemistry of the products is controlled by the geometry of the alkene group in vinyloxiranes. The stereoselective formation of stereoisomers of the syn hydroxy group in 630 and the ami in 632 from the ( )-epoxide 629 and the (Z)-epoxide 631 respectively is an example. [Pg.376]

A simple approach for the formation of 2-substituted 3,4-dihydro-2H-pyrans, which are useful precursors for natural products such as optically active carbohydrates, is the catalytic enantioselective cycloaddition reaction of a,/ -unsaturated carbonyl compounds with electron-rich alkenes. This is an inverse electron-demand cycloaddition reaction which is controlled by a dominant interaction between the LUMO of the 1-oxa-1,3-butadiene and the HOMO of the alkene (Scheme 4.2, right). This is usually a concerted non-synchronous reaction with retention of the configuration of the die-nophile and results in normally high regioselectivity, which in the presence of Lewis acids is improved and, furthermore, also increases the reaction rate. [Pg.178]

Honk et al. concluded that this FMO model imply increased asynchronicity in the bond-making processes, and if first-order effects (electrostatic interactions) were also considered, a two-step mechanisms, with cationic intermediates become possible in some cases. It was stated that the model proposed here shows that the phenomena generally observed on catalysis can be explained by the concerted mechanism, and allows predictions of the effect of Lewis acid on the rates, regioselectivity, and stereoselectivity of all concerted cycloadditions, including those of ketenes, 1,3-dipoles, and Diels-Alder reactions with inverse electron-demand [2],... [Pg.305]

Inversion of the regioselectivity in the addition of 2-butenylmagnesium chloride to aldehydes in favor of the a-adducts is caused by aluminum trichloride. A typical experiment is shown24 ... [Pg.254]

For trisubstituted olefins, the nucleophile attacks predominantly at the less substituted end of the allyl moiety, e.g. to afford a 78 22 mixture of 13 and 14 (equation 7). Both the oxidative addition of palladium(O) and the subsequent nucleophilic attack occur with inversion of configuration to give the product of net retention7. The synthesis of the sex pheromone 15 of the Monarch butterfly has been accomplished by using bis[bis(l,2-diphenylphosphinoethane)]palladium as a catalyst as outlined in equation 87. A substitution of an allyl sulfone 16 by a stabilized carbon nucleophile, such as an alkynyl or vinyl system, proceeds regioselectively in the presence of a Lewis acid (equation 9)8. The... [Pg.763]

Sauer and Heldmann [97] recently reported an interesting application of ethynyltributyltin as an electron-rich dienophile in an inverse electron-demand Diels-Alder reaction with the electron-deficient triazine derivative 94. This method is interesting because the reaction is highly regioselective and the trialkylstannyl group is easily replaced by several groups under mild conditions, leading to substituted pyridines 95 (Scheme 2.41). [Pg.68]

As outlined above, enantioconvergent processes require two separate reaction pathways in order to transform a racemic substrate into a single product enantiomer. This is accomplished by employing a catalyst, which transforms one of the substrate enantiomers to the product with retention of configuration. Concurrently, another catalyst, with opposite enantioselectivity and opposite regioselectivity, transforms the other substrate enantiomer with inversion of configuration (Figure 5.24). [Pg.127]

These results show for the first time, the reactivity of the double bond C = N with the 2 diazopropane that constitutes an efficient route for the preparation of new heterocyclic systems. In all cases, the reaction is peris-elective only the double bond C = N is affected diazo carbon attacks the quaternary carbon of the imidate 60 and not the double bond C = O (substrates 60b and 60c). Indeed, diazopropane reacts with ketones with inverse regioselectivity (with regards to imidates 60) to yield oxadiazoUnes [32,33] (Scheme 14). [Pg.143]

However, with 1-hexyne or phenylacetylene, the thorium catalyst induces a dramatic inversion in regioselectivity giving imines with various amounts of dimerized alkyne (e.g., Eq. 4.84) [301],... [Pg.127]


See other pages where Regioselectivity inversion is mentioned: [Pg.117]    [Pg.132]    [Pg.311]    [Pg.347]    [Pg.289]    [Pg.117]    [Pg.132]    [Pg.311]    [Pg.347]    [Pg.289]    [Pg.349]    [Pg.358]    [Pg.372]    [Pg.378]    [Pg.325]    [Pg.120]    [Pg.278]    [Pg.689]    [Pg.733]    [Pg.43]    [Pg.272]    [Pg.278]    [Pg.132]    [Pg.132]    [Pg.132]    [Pg.140]    [Pg.216]    [Pg.158]    [Pg.242]    [Pg.496]    [Pg.1105]    [Pg.248]    [Pg.318]    [Pg.76]    [Pg.386]    [Pg.109]    [Pg.162]    [Pg.249]    [Pg.300]    [Pg.697]    [Pg.697]    [Pg.205]    [Pg.430]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



© 2024 chempedia.info