Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multi-dimensional reflection principle

Fig. 6.4. Schematic illustration of the multi-dimensional reflection principle in the adiabatic limit. The left-hand side shows the vibrationally adiabatic potential curves en(R). The independent part of the bound-state wavefunction in the ground electronic state is denoted by Fig. 6.4. Schematic illustration of the multi-dimensional reflection principle in the adiabatic limit. The left-hand side shows the vibrationally adiabatic potential curves en(R). The independent part of the bound-state wavefunction in the ground electronic state is denoted by <pr(R). The right-hand side depicts the corresponding partial photodissociation cross sections a(E n) (dashed curves) and the total cross section crtot(E) (solid curve) with the arrows illustrating the one-dimensional reflection principle. Upper part In this case, the steepness of the PES leads to comparatively broad partial photodissociation cross sections with the result that the total spectrum is structureless. Lower part In this case, the potential is rather flat near Re so that the partial cross sections are relatively narrow, and as a result the total cross section shows broad vibrational structures.
In contrast to indirect dissociation, which is the topic of Chapter 7, direct photodissociation is relatively simple to understand. The reflection principle describes qualitatively the fully state-resolved photofragmentation cross sections a E, n, j) as a multi-dimensional mapping of the initial coordinate distribution in the electronic ground state ... [Pg.133]


See other pages where Multi-dimensional reflection principle is mentioned: [Pg.115]    [Pg.115]    [Pg.117]    [Pg.119]    [Pg.146]    [Pg.151]   
See also in sourсe #XX -- [ Pg.115 , Pg.116 , Pg.117 ]




SEARCH



Reflection principle

© 2024 chempedia.info