Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reductions additives, chlorotrimethylsilane

Standard cyclisation methodology was used to access the cyclic monophosphinic acid derivative 78 by reaction of ammonium phosphonate and ethyldiisopropylamine, followed by the addition of chlorotrimethylsilane, with 2,2 -bis (bromomethyl)-l,l -biphenyl. Silane reduction of 78 gave the secondary phosphine. The secondary phosphine borane complex 79 could be used in alkylation or Michael addition reactions. For example the Michael adduct 80 was produced in high yield by treatment of 78 with a NaH suspension in THF followed by the addition of diethylvinylphosphonate . [Pg.356]

Conjugate reduction.1 This stable copper(I) hydride cluster can effect conjugate hydride addition to a,p-unsaturated carbonyl compounds, with apparent utilization of all six hydride equivalents per cluster. No 1,2-reduction of carbonyl groups or reduction of isolated double bonds is observed. Undesirable side reactions such as aldol condensation can be suppressed by addition of water. Reactions in the presence of chlorotrimethylsilane result in silyl enol ethers. The reduction is stereoselective, resulting in hydride delivery to the less-hindered face of the substrate. [Pg.175]

The anion radical species formed by the electroreduction of aliphatic esters show interesting reactivities, and the reduction of olefinic esters gives bicyclic products with high regio- and stereoselectivity. The electroreduction of the ester in the presence of chlorotrimethylsilane affords a tricyclic product (Scheme 21) [35, 40]. The mechanism of this cyclization reaction seems to be the addition of anion radical species, formed by the reduction of the ester group, to the carbon-carbon double bond. [Pg.207]

Cathodic reduction of bicyclic gem-dibromocyclopropane in the presence of chlorotrimethylsilane provides the exo-silylated isomer selectively. With a sacrificial Mg anode the current efficiency can be increased by sonication as the anode acts additionally as a chemical reducing agent [358]. The 2e reduction of (5 )-(+)-l-bromo-l-carboxy-2,2-diphenylcyclopropane showed that the stereoselectivity at a Hg cathode was strongly determined by the supporting electrolyte cation. With NH4+, a preferential retention of configuration was observed, which increased with a more negative reduction potential. By contrast, a R4N+ cation gives rise to a major inversion, which increases with the bulkiness... [Pg.438]

Examples are known of hydrocoupling between methyl acrylate and ketones in both protic and aprotic solvents. Reaction in acid solution is thought to involve reduction of the protonated ketoneto a radical, which adds to acrylate. In aprotic solvents, the ketone is more difficult to reduce and electron addition occurs on methyl acrylate. Modest yields of coupling product, dimethylbutanolide, are obtained from acetone and methyl acrylate in dimethylformamide [134]. Better results are obtained by reduction of methyl acrylate and an exces of the carbonyl compound in dimethyIformamide in the presence of chlorotrimethylsilane [135]. This process is useful for the synthesis of butenolides and some examples are given in Table 3.8. [Pg.80]

Alkyl alkanoates are reduced only at very negative potentials so that preparative scale experiments at mercury or lead cathodes are not successful. Phenyl alkanoates afford 30-36% yields of the alkan-l-ol under acid conditions [148]. Preparative scale reduction of methyl alkanoates is best achieved at a magnesium cathode in tetrahydrofuran containing tm-butanol as proton donor. The reaction is carried out in an undivided cell with a sacrificial magnesium anode and affords the alkan-l-ol in good yields [151]. In the absence of a proton donor and in the presence of chlorotrimethylsilane, acyloin derivatives 30 arc formed in a process related to the acyloin condensation of esters using sodium in xylene [152], Radical-anions formed initially can be trapped by intramolecular addition to an alkene function in substrates such as 31 to give aiicyclic products [151]. [Pg.354]


See other pages where Reductions additives, chlorotrimethylsilane is mentioned: [Pg.4]    [Pg.22]    [Pg.322]    [Pg.608]    [Pg.16]    [Pg.608]    [Pg.549]    [Pg.20]    [Pg.141]    [Pg.79]   
See also in sourсe #XX -- [ Pg.178 , Pg.179 ]




SEARCH



Chlorotrimethylsilane

Reductive addition

© 2024 chempedia.info