Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox Schiemann

On the basis of these redox potentials it seems likely that direct electron release to the benzenediazonium ion takes place only with iodide. This corresponds well with experience in organic synthesis iodo-de-diazoniations are possible without catalysts, light, or other special procedures (Sec. 10.6). For bromo- and chloro-de-di-azoniations, catalysis by cuprous salts (Sandmeyer reaction, Sec. 10.5) is necessary. For fluorination the Balz-Schiemann reaction of arenediazonium tetrafluoroborates in the solid state (thermolysis) or in special solvents must be chosen (see Sec. 10.4). With astatide (211At-), the heaviest of the halide ions, Meyer et al. (1979) found higher yields for astato-de-diazoniation than for iodo-de-diazoniation, a result consistent with the position of At in the Periodic System. It has to be emphasized, however, that in investigations based on measuring yields of final products (Ar-Hal), the possibility that part of the yield may be due to heterolytic dediazoniation is very difficult to quantify. [Pg.194]

Halo-de-diazoniations are a series of reactions in which the replacement of the dia-zonio group changes from a heterolytic de-diazoniation in the case of the fluorination (Balz-Schiemann reaction) to transition metal-catalyzed chlorination and bromination (Sandmeyer reaction) and finally to iodination and astatination where no catalyst is necessary due to the favorable redox potentials of I and At- (I- E° = 1.3 V). [Pg.651]


See other pages where Redox Schiemann is mentioned: [Pg.649]   
See also in sourсe #XX -- [ Pg.236 , Pg.348 ]




SEARCH



Schiemann

© 2024 chempedia.info