Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron nuclear dynamics reactive collisions

Reactive collisions, electron nuclear dynamics (END), molecular systems, 338—342 final-state analysis, 343 -349... [Pg.95]

The integration of this set of coupled first-order differential equation can be done in a number of ways. Care must be taken since there are basically rather two different time scales involved, i.e. that of the nuclear dynamics and that of the normally considerably faster electron dynamics. It should be observed that this END takes place in a Cartesian laboratory reference frame, which means that the overall translation as well as overall rotation of the molecular system is included. This offers no complications since the equations of motion satisfy basic conservation laws and, thus, total momentum and angular momentum are conserved. At any time in the evolution of the molecular system can the overall translation be isolated and eliminated if so should be deemed necessary. This level of theory [16,19] is implemented in the program system ENDyne [20], and has been applied to atomic and molecular reactive collisions. Calculations of cross sections, differential as well as integral, yield results in excellent agreement with the best experiments. [Pg.36]

Another topic in the classical treatment of reactive collisions which has advanced considerably in recent years concerns the treatment of electronically nonadiabatic processes. Early work on this topic followed either the semiclassical complex trajectory method of George and Miller,or the more approximate surface hopping model of Tully and Preston.Recent work in this field by McCurdy, Meyer, and Miller " has attempted to develop a purely classical description of the electronic degrees of freedom, thereby replacing the many-surface aspect of the dynamics with extra classical degrees of freedom (one for each surface beyond the first) which represent the collective electronic motions to which the nuclear motions can couple to cause transitions. This means that a multiple-surface problem can now be treated by standard" trajectory methods, which is a considerable computational simplification. Applications to the f ( Pi/2) 2... [Pg.293]

Theoretical studies of the properties of the individual components of nanocat-alytic systems (including metal nanoclusters, finite or extended supporting substrates, and molecular reactants and products), and of their assemblies (that is, a metal cluster anchored to the surface of a solid support material with molecular reactants adsorbed on either the cluster, the support surface, or both), employ an arsenal of diverse theoretical methodologies and techniques for a recent perspective article about computations in materials science and condensed matter studies [254], These theoretical tools include quantum mechanical electronic structure calculations coupled with structural optimizations (that is, determination of equilibrium, ground state nuclear configurations), searches for reaction pathways and microscopic reaction mechanisms, ab initio investigations of the dynamics of adsorption and reactive processes, statistical mechanical techniques (quantum, semiclassical, and classical) for determination of reaction rates, and evaluation of probabilities for reactive encounters between adsorbed reactants using kinetic equation for multiparticle adsorption, surface diffusion, and collisions between mobile adsorbed species, as well as explorations of spatiotemporal distributions of reactants and products. [Pg.71]


See other pages where Electron nuclear dynamics reactive collisions is mentioned: [Pg.96]    [Pg.234]    [Pg.338]    [Pg.239]    [Pg.110]    [Pg.9]    [Pg.142]    [Pg.338]    [Pg.534]    [Pg.340]    [Pg.378]    [Pg.52]    [Pg.167]    [Pg.2]   


SEARCH



Collision electronic

Collision nuclear

Collisions dynamics

Electron collisions

Electron dynamics

Electron nuclear dynamics

Electron nuclear dynamics , molecular systems, reactive collisions

Nuclear dynamics

Reactive collision

Reactive collision dynamics

Reactive dynamics

Reactivity dynamic

© 2024 chempedia.info