Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions with photochemically induced

During the past few years, increasing numbers of reports have been published on the subject of domino reactions initiated by oxidation or reduction processes. This was in stark contrast to the period before our first comprehensive review of this topic was published in 1993 [1], when the use of this type of transformation was indeed rare. The benefits of employing oxidation or reduction processes in domino sequences are clear, as they offer easy access to reactive functionalities such as nucleophiles (e. g., alcohols and amines) or electrophiles (e. g., aldehydes or ketones), with their ability to participate in further reactions. For that reason, apart from combinations with photochemically induced, transition metal-catalyzed and enzymatically induced processes, all other possible constellations have been embedded in the concept of domino synthesis. [Pg.494]

Subsequent irradiation of S-14 with k > 570 nm in the presence of a nitrogen molecule in the same matrix cage results as in the case of T-10 in the recapture of nitrogen (which is also possible by annealing the matrix at 25 K). Parallel to this reaction, a photochemically induced rearrangement of S-14 to N-cyano-1 W-azirene (12) — perhaps via the ring-opened carbene 11 — and Af-cyanoketenimine occurs. [Pg.121]

One finds that when the reaction is thermally induced the butadiene (yclization process is conrotatory, but when the reaction is photochemically induced, the process is disrotatory. The simplest approach that explains these facts starts with the assumption that the energy change during the reaction is determined primarily by the energy change in the highest-occupied MO (HOMO) of the substituted s-cts-butadiene molecule. This... [Pg.685]

The radical X is formed by homolysis of the X—R bond either thermally or photolytically. In the reactions of alcohols with lead tetraacetate evidence suggests that the X—R bond (X = 0, R = Pb(OAc)3) has ionic character. In this case the oxy radical is formed by a one electron transfer (thermally or photochemically induced) from oxygen to lead. [Pg.238]

By a photochemically induced elimination of CO, a chromium carbene complex with a free coordination site is generated. That species can coordinate to an alkyne, to give the alkyne-chromium carbonyl complex 4. The next step is likely to be a cycloaddition reaction leading to a four-membered ring compound 5. A subsequent electrocyclic ring opening and the insertion of CO leads to the vinylketene complex 6 ... [Pg.98]

Allylic silanes react with aldehydes, in the presence of Lewis acids, to give an allyl-substituted alcohol. In the case of benzylic silanes, this addition reaction has been induced with Mg(C104)2 under photochemical conditions. The addition of chiral additives leads to the alcohol with good asymmetric induction. In a related reaction, allylic silanes react with acyl halides to produce the corresponding carbonyl derivative. The reaction of phenyl chloroformate, trimethylallylsilane, and AICI3, for example, gave phenyl but-3-enoate. ... [Pg.1239]

For example, photolysis of a suspension of an arylthallium ditrifluoro-acetate in benzene results in the formation of unsymmetrical biphenyls in high yield (80-90%) and in a high state of purity 152). The results are in full agreement with a free radical pathway which, as suggested above, is initiated by a photochemically induced homolysis of the aryl carbon-thallium bond. Capture of the resulting aryl radical by benzene would lead to the observed unsymmetrical biphenyl, while spontaneous disproportionation of the initially formed Tl(II) species to thallium(I) trifluoroacetate and trifluoroacetoxy radicals, followed by reaction of the latter with aryl radicals, accounts for the very small amounts of aryl trifluoroacetates formed as by-products. This route to unsymmetrical biphenyls thus complements the well-known Wolf and Kharasch procedure involving photolysis of aromatic iodides 171). Since the most versatile route to the latter compounds involves again the intermediacy of arylthallium ditrifluoroacetates (treatment with aqueous potassium iodide) 91), these latter compounds now occupy a central role in controlled biphenyl synthesis. [Pg.171]

The aryl-thallium bond is thus apparently capable of displacement either by electrophilic or by suitable nucleophilic reagents. Coupled with its propensity for homolytic cleavage (spontaneous in the case of ArTlIj compounds, and otherwise photochemically induced), ArTlXj compounds should be capable of reacting with a wide variety of reagents under a wide variety of conditions. Since the position of initial aromatic thallation can be controlled to a remarkable degree, the above reactions may be only representative of a remarkably versatile route to aromatic substitution reactions in which organothallium compounds play a unique and indispensable role. [Pg.173]

To date, only one example of a combination of a photochemically induced transformation with a transition metal-catalyzed reaction has been found in the literature. This hv/Pd°-promoted process allows the synthesis of five-membered cyclic y-keto esters 5-119 from 5-iodoalkenes 5-117 in the presence of CO and an alcohol 5-118 as a nucleophile (Scheme 5.24) [41]. The yields are high, and differently substituted iodoalkenes can be employed. [Pg.355]

A great many papers have been published on the photochemically induced decomposition of hydrogen compounds. Naturally, these experiments give no information about the kinetics of the first unimolecular reaction step. Wherever there is information about the kinetics of secondary reactions with the reactant... [Pg.1]

The kinetics of the thermally induced homogeneous decomposition of phosphine (PH3) have not yet been studied. The species PH2, PH and P2 are formed on flash photolysis of PH3 and could be identified by their absorption spectra63. There are proposals as to the mechanism of the consecutive process after the photochemical primary step, but nothing is known about the kinetic parameters of these reactions. With arsine and antimony hydride only the heterogeneous decomposition has been studied64,65. [Pg.26]

The importance of tertiary amines in the photochemically induced electron transfer reactions has also been addressed5. Direct irradiation of aromatic or aliphatic amines often leads to the scission of C—N, N—H or C—H bonds that lead to the subsequent chemical reactions by radical pathways6. In this section, photochemical reactions of amines reported since 1978 will be considered with emphasis on photoinduced electron transfer. Photochemical reactions of inorganic and organometallic compounds will not be included unless photochemistry of amine moieties is the primary interest. [Pg.684]

In some way formally similar to the benzidine rearrangement is the Wallach rearrangement of azoxybenzene 23 to give 4-hydroxyazobenzene 24 in concentrated (typically 95%) H2SO4. The 2-hydroxy isomer is sometimes formed in low yield with some substituted azoxybenzenes, and it is the main product in the photochemically induced reaction. Much of what is known about the reaction has been covered in earlier review articles28-30. This contribution will report work published since 1981. [Pg.865]

Nitrobenzenes react with potassium cyanide in the presence of cetyltrimethylammo-nium bromide to yield benzonitriles [71], The reaction also requires the presence of chloro substituents on the ring and at least two nitro groups (Table 2.9). Diazosulphides, ArN=NSPh, are converted into the benzonitriles, ArCN, by a photochemically induced SRN1 reaction with tetra-n-butylammonium cyanide [72, 73], Yields vary from <20% to >70%. Photocyanation of aromatic hydrocarbons has been achieved using tetra-n-butylammonium cyanide in acetonitrile or dichloromethane [74, 75]. [Pg.41]

Autoxidation of secondary acetonitriles under phase-transfer catalytic conditions [2] avoids the use of hazardous and/or expensive materials required for the classical conversion of the nitriles into ketones. In the course of C-alkylation of secondary acetonitriles (see Chapter 6), it had been noted that oxidative cleavage of the nitrile group frequently occurred (Scheme 10.7) [3]. In both cases, oxidation of the anionic intermediate presumably proceeds via the peroxy derivative with the extrusion of the cyanate ion [2], Advantage of the direct oxidation reaction has been made in the synthesis of aryl ketones [3], particularly of benzoylheteroarenes. The cyanomethylheteroarenes, obtained by a photochemically induced reaction of halo-heteroarenes with phenylacetonitrile, are oxidized by air under the basic conditions. Oxidative coupling of bromoacetonitriles under basic catalytic conditions has been also observed (see Chapter 6). [Pg.458]

Timmons, R. B. The photochemically induced reactions of sulfur dioxide with alkanes and carbon monoxide. Photochem. Photobiol. 12 219-230, 1970. [Pg.123]

The major fate mechanism of atmospheric 2-hexanone is photooxidation. This ketone is also degraded by direct photolysis (Calvert and Pitts 1966), but the reaction is estimated to be slow relative to reaction with hydroxyl radicals (Laity et al. 1973). The rate constant for the photochemically- induced transformation of 2-hexanone by hydroxyl radicals in the troposphere has been measured at 8.97x10 cm / molecule-sec (Atkinson et al. 1985). Using an average concentration of tropospheric hydroxyl radicals of 6x10 molecules/cm (Atkinson et al. 1985), the calculated atmospheric half-life of 2-hexanone is about 36 hours. However, the half-life may be shorter in polluted atmospheres with higher OH radical concentrations (MacLeod et al. 1984). Consequently, it appears that vapor-phase 2-hexanone is labile in the atmosphere. [Pg.61]

Trimethyloxazole 257 undergoes photochemically induced [2 + 2] cycloaddition with aromatic and aliphatic aldehydes to provide bicyclic oxazolines 258 with excellent regiochemical and stereochemical control. Diastereoselec-tivities from 75-99% can be achieved, which is the first reported example of a Paterno-Biichi reaction involving an oxazole. The oxetane cycloadducts can be hydrolyzed to a-amino-(3-hydroxy ketones. Other oxazoles have not been evaluated to determine if they undergo the photochemical cycloaddition (Scheme 8.71). [Pg.407]


See other pages where Reactions with photochemically induced is mentioned: [Pg.11]    [Pg.11]    [Pg.11]    [Pg.11]    [Pg.487]    [Pg.309]    [Pg.653]    [Pg.91]    [Pg.255]    [Pg.605]    [Pg.138]    [Pg.382]    [Pg.138]    [Pg.27]    [Pg.78]    [Pg.301]    [Pg.51]    [Pg.382]    [Pg.340]    [Pg.337]    [Pg.235]    [Pg.40]    [Pg.318]    [Pg.67]    [Pg.287]    [Pg.267]    [Pg.71]    [Pg.144]    [Pg.429]    [Pg.590]    [Pg.664]    [Pg.347]    [Pg.32]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.4 , Pg.4 ]




SEARCH



Inducing reaction

Photochemical induced

Photochemical reaction with

Photochemically induced reactions

Reactions induced

© 2024 chempedia.info