Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate determining step compounds

Melander first sought for a kinetic isotope effect in aromatic nitration he nitrated tritiobenzene, and several other compounds, in mixed acid and found the tritium to be replaced at the same rate as protium (table 6.1). Whilst the result shows only that the hydrogen is not appreciably loosened in the transition state of the rate-determining step, it is most easily understood in terms of the S 2 mechanism with... [Pg.110]

Until now we have been discussing the kinetics of catalyzed reactions. Losses due to volatility and side reactions also raise questions as to the validity of assuming a constant concentration of catalyst. Of course, one way of avoiding this issue is to omit an outside catalyst reactions involving carboxylic acids can be catalyzed by these compounds themselves. Experiments conducted under these conditions are informative in their own right and not merely as means of eliminating errors in the catalyzed case. As noted in connection with the discussion of reaction (5.G), the intermediate is stabilized by coordination with a proton from the catalyst. In the case of autoprotolysis by the carboxylic acid reactant, the rate-determining step is probably the slow reaction of intermediate [1] ... [Pg.288]

In the normal process ( ), step (J) occurs very rapidly and step (/) is the rate-determining step, whereas in the inhibition process (B), step (3) occurs very slowly, generally over a matter of days, so that it is rate determining. Thus it has been demonstrated with AChE that insecticides, eg, tetraethyl pyrophosphate and mevinphos, engage in first-order reactions with the enzyme the inhibited enzyme is a relatively stable phosphorylated compound containing one mole of phosphoms per mole of enzyme and as a result of the reaction, an equimolar quantity of alcohoHc or acidic product HX is hberated. [Pg.289]

For alkyl-substituted alkynes, there is a difference in stereochemistry between mono-and disubstituted derivatives. The former give syn addition whereas the latter react by anti addition. The disubstituted (internal) compounds are considerably ( 100 times) more reactive than the monosubstituted (terminal) ones. This result suggests that the transition state of the rate-determining step is stabilized by both of the alkyl substituents and points to a bridged intermediate. This would be consistent with the overall stereochemistry of the reaction for internal alkynes. [Pg.374]

The notion of concurrent SnI and Sn2 reactions has been invoked to account for kinetic observations in the presence of an added nucleophile and for heat capacities of activation,but the hypothesis is not strongly supported. Interpretations of borderline reactions in terms of one mechanism rather than two have been more widely accepted. Winstein et al. have proposed a classification of mechanisms according to the covalent participation by the solvent in the transition state of the rate-determining step. If such covalent interaction occurs, the reaction is assigned to the nucleophilic (N) class if covalent interaction is absent, the reaction is in the limiting (Lim) class. At their extremes these categories become equivalent to Sn and Sn , respectively, but the dividing line between Sn and Sn does not coincide with that between N and Lim. For example, a mass-law effect, which is evidence of an intermediate and therefore of the SnI mechanism, can be observed for some isopropyl compounds, but these appear to be in the N class in aqueous media. [Pg.429]

Once formed, 7 and 8 undergo a Michael reaction that gives rise to ketoenamine 9. Ring closure, to form 10, and loss of water then afforded 1,4-dihydropyridine 11. The presence of 9 and 10 could not be detected thus ring closure and dehydration were deduced to proceed faster than the Michael addition. This has the result of making the Michael addition the rate-determining step in this sequence. Conversely, if the reaction is run in the presence of a small amount of diethylamine, compounds related to 10 could be isolated. Diol 20 has been isolated in an unique case (R = CFb). Attempts to dehydrate this compound under a variety of conditions were unsuccessful. Stereoelectronic effects related to the dehydration may be the cause. In related heterocyclic ring formations, it has been determined that dehydration (20 —> 10) is about 10 times slower than diol formation (19 —> 20). Therefore, one would expect 20 to... [Pg.306]

The Pictet-Spengler reaction is an acid-catalyzed intramolecular cyclization of an intermediate imine of 2-arylethylamine, formed by condensation with a carbonyl compound, to give 1,2,3,4-tetrahydroisoquinoline derivatives. This condensation reaction has been studied under acid-catalyzed and superacid-catalyzed conditions, and a linear correlation had been found between the rate of the reaction and the acidity of the reaction medium. Substrates with electron-donating substituents on the aromatic ring cyclize faster than the corresponding unsubstituted compounds, supporting the idea that the cyclization process is involved in the rate-determining step of the reaction. [Pg.470]

During the next fifty years the interest in derivatives of divalent carbon was mainly confined to methylene (CHg) and substituted methylenes obtained by decomposition of the corresponding diazo compounds this phase has been fully reviewed by Huisgen. The first convincing evidence for the formation of dichlorocarbene from chloroform was presented by Hine in 1950. Kinetic studies of the basic hydrolysis of chloroform in aqueous dioxane led to the suggestion that the rate-determining step was loss of chloride ion from the tri-chloromethyl anion which is formed in a rapid pre-equilibrium with hydroxide ions ... [Pg.58]

A distinction between these four possibilities can be made on the basis of the kinetic isotope effect. There is no isotope effect in the arylation of deuterated or tritiated benzenoid compounds with dibenzoyl peroxide, thereby ruling out mechanisms in which a C5— bond is broken in the rate-determining step of the substitution. Paths (ii) and (iii,b) are therefore eliminated. In path (i) the first reaction, Eq. (6), is almost certain to be rate-determining, for the union of tw o radicals, Eq. (7), is a process of very low activation energy, while the abstraction in which a C—H bond is broken would require activation. More significant evidence against this path is that dimers, Arz, should result from it, yet they are never isolated. For instance, no 4,4 -dinitrobiphenyl is formed during the phenylation of... [Pg.136]

Finally, the brominations of mesitylene, 1,2,4,5-tetramethyl- and pentamethyl-benzene in chloroform (which is more polar than carbon tetrachloride) are first-order in bromine and iodine monobromide318, so that this is entirely consistent with the pattern developed above, i.e. the more polar the solvent and the more reactive the compound, the fewer the number of molecules of iodine monobromide that are involved in the rate-determining step. Measurements of rates between 25 and 42 °C revealed no significant trend owing to the variability of the rate coefficients determined at any temperature, but even so it is clear that there is no appreciable activation energy for these compounds, and there may have been temperature inversion for some of them. [Pg.132]

The kinetics of cleavage of some of these compounds have been measured by dilatometry and in other acidic media, and the rate coefficients and relative rates are given in Table 233658, 673, 686, 687. It can be seen that there is relatively little variation in the spread of rate coefficients with change in the acid and this argues against nucleophilic participation of the acid in the rate-determining step... [Pg.333]

Systematic studies of the selectivity of electrophilic bromine addition to ethylenic bonds are almost inexistent whereas the selectivity of electrophilic bromination of aromatic compounds has been extensively investigated (ref. 1). This surprising difference arises probably from particular features of their reaction mechanisms. Aromatic substitution exhibits only regioselectivity, which is determined by the bromine attack itself, i.e. the selectivity- and rate-determining steps are identical. [Pg.100]

Isotope Effects. If the hydrogen ion departs before the arrival of the electrophile (SeI mechanism) or if the arrival and departure are simultaneous, there should be a substantial isotope effect (i.e., deuterated substrates should undergo substitution more slowly than nondeuterated compounds) because, in each case, the C—H bond is broken in the rate-determining step. However, in the arenium ion mechanism, the C—H bond is not broken in the rate-... [Pg.676]

How can we tell if 10 is present on the reaction path If it is present, there are two possibilities (1) The formation of 10 is rate determining (the conversion of 10 to 11 is much faster), or (2) the formation of 10 is rapid, and the conversion 10 to 11 is rate determining. One way to ascertain which species is formed in the rate determining step in a given reaction is to use the stability information given in Table 11.1. We measure the relative rates of reaction of a given electrophile with the series of compounds Usted in Table 11.1. If the relative rates resemble the arenium ion stabilities, we conclude that the arenium ion is formed in the slow step but if they resemble the stabilities of the Jt complexes, the latter are formed in the slow step. When such experiments are carried out, it is found in most cases that the relative rates are similar to the arenium ion and not to the n complex stabilities. For example,... [Pg.680]

Evidence for this mechanism was the isolation of 12 and the demonstrati on that for P-naphthol treated with ammonia and HSO3, the rate of the reaction depends only on the substrate and on HS03 , indicating that ammonia is not involved in the rate-determining step. If the starting compound is a P-naphthol,... [Pg.865]

The formation of Intermediate compounds (e.g. carbamlc acid) Is not described in the model. So, the formation of urethane (reaction 1) and the hydrolysis of the isocyanate (reaction 2) are the rate-determining steps. [Pg.231]

Both these methods require equilibrium constants for the microscopic rate determining step, and a detailed mechanism for the reaction. The approaches can be illustrated by base and acid-catalyzed carbonyl hydration. For the base-catalyzed process, the most general mechanism is written as general base catalysis by hydroxide in the case of a relatively unreactive carbonyl compound, the proton transfer is probably complete at the transition state so that the reaction is in effect a simple addition of hydroxide. By MMT this is treated as a two-dimensional reaction proton transfer and C-0 bond formation, and requires two intrinsic barriers, for proton transfer and for C-0 bond formation. By NBT this is a three-dimensional reaction proton transfer, C-0 bond formation, and geometry change at carbon, and all three are taken as having no barrier. [Pg.20]


See other pages where Rate determining step compounds is mentioned: [Pg.283]    [Pg.712]    [Pg.447]    [Pg.426]    [Pg.464]    [Pg.699]    [Pg.307]    [Pg.198]    [Pg.137]    [Pg.246]    [Pg.15]    [Pg.91]    [Pg.347]    [Pg.7]    [Pg.82]    [Pg.92]    [Pg.156]    [Pg.294]    [Pg.297]    [Pg.304]    [Pg.317]    [Pg.322]    [Pg.451]    [Pg.4]    [Pg.703]    [Pg.768]    [Pg.855]    [Pg.1316]    [Pg.107]    [Pg.244]    [Pg.85]    [Pg.73]    [Pg.915]   
See also in sourсe #XX -- [ Pg.696 ]




SEARCH



Compounds determination

Determining step

Ionic compounds rate-determining step

Rate determining step

Rate-determinating step

Rates determination

Rates rate determining step

© 2024 chempedia.info