Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radiogenic isotopes peridotite xenoliths

Figure 9. Plots of Li and radiogenic isotopes for mantle rocks, (a) 5 Li vs. Sr/ Sr (b) 5 Li vs. Nd/ Nd (c) "Sr/ Sr vs. Pb/ Pb (d) 5"Li vs. Pb/ Pb (Nishio et al. 2003, 2004). Symbols + = south Pacific island basalts (six islands) O = Iherzolite xenolith, Bullenmerri, Australia = Iherzolite xenolith, Sikhote-Alin, Russia (three localities) A = dunite-peridotite-pyroxenite xenolith, Kyushu, Japan (two localities) V = Iherzolite xenolith, Ichinomegata, Japan. The ocean island data are from bulk rocks, the xenolith data are clinopyroxene separates. For explanations of the derivation of radiogenic isotope fields (DM, EMI, EM2, HIMU), see Zindler and Hart (1986). The estimate for Li isotopes in DM is based on MORE. The Li isotopic ranges for the other mantle reservoirs are based on Nishio et al. (2004) and Nishio et al. (2003), but these will require further examination (hence the use of question marks). Figure 9. Plots of Li and radiogenic isotopes for mantle rocks, (a) 5 Li vs. Sr/ Sr (b) 5 Li vs. Nd/ Nd (c) "Sr/ Sr vs. Pb/ Pb (d) 5"Li vs. Pb/ Pb (Nishio et al. 2003, 2004). Symbols + = south Pacific island basalts (six islands) O = Iherzolite xenolith, Bullenmerri, Australia = Iherzolite xenolith, Sikhote-Alin, Russia (three localities) A = dunite-peridotite-pyroxenite xenolith, Kyushu, Japan (two localities) V = Iherzolite xenolith, Ichinomegata, Japan. The ocean island data are from bulk rocks, the xenolith data are clinopyroxene separates. For explanations of the derivation of radiogenic isotope fields (DM, EMI, EM2, HIMU), see Zindler and Hart (1986). The estimate for Li isotopes in DM is based on MORE. The Li isotopic ranges for the other mantle reservoirs are based on Nishio et al. (2004) and Nishio et al. (2003), but these will require further examination (hence the use of question marks).
Zhuravlev A. Z., Laz ko Y. Y., and Ponomarenko A. I. (1991) Radiogenic isotopes and REE in garnet peridotite xenoliths from the Mir kimberlite pipe, Yakutia. Geokhimiya 7, 982-994. [Pg.977]

Osmium isotopes currently provide the strongest case for mineral-to-mineral disequilibrium, and for mineral-melt disequilibrium available from observations on natural rocks. Thus, both osmium alloys and sulfides from ophiolites and mantle xenoliths have yielded strongly heterogeneous osmium isotope ratios (Alard et al., 2002 Meibom et al., 2002). The most remarkable aspect of these results is that these ophiolites were emplaced in Phanerozoic times, yet they contain osmiumbearing phases that have retained model ages in excess of 2 Ga in some cases. The melts that were extracted from these ophiolitic peridotites contained almost certainly much more radiogenic osmium and could, in any case, not have been in osmium-isotopic equilibrium with all of these isotopically diverse residual phases. [Pg.768]

There are few published Lu-Hf isotope smdies of mantle xenoliths because of difficulties in efficient ionization of hafnium by thermal ionization mass spectrometers. Multicollector plasma mass spectrometers are a solution to this problem and data are emerging that promise to be a more revealing tool in mantle environments than neodymium isotopes. The variety of Lu/Hf fractionation displayed by mantle minerals (Figure 42) indicates that, as with other isotope systems, isotopic variation should be considerable and initial results are confirming this. Salters and Zindler (1995) found very radiogenic Hf/ Hf at relatively unradiogenic neodymium isotope compositions in spinel peridotites from Salt Lake Crater, Hawaii. Radiogenic Hf/ Hf also characterizes low-T circum-cratonic... [Pg.231]


See other pages where Radiogenic isotopes peridotite xenoliths is mentioned: [Pg.162]    [Pg.187]    [Pg.925]    [Pg.926]    [Pg.927]    [Pg.933]    [Pg.933]    [Pg.934]    [Pg.936]    [Pg.939]    [Pg.1201]    [Pg.223]    [Pg.224]    [Pg.225]    [Pg.231]    [Pg.231]    [Pg.232]    [Pg.234]    [Pg.237]    [Pg.858]    [Pg.924]    [Pg.929]    [Pg.930]    [Pg.931]    [Pg.947]    [Pg.69]    [Pg.156]    [Pg.222]    [Pg.227]    [Pg.228]    [Pg.245]    [Pg.390]   
See also in sourсe #XX -- [ Pg.221 ]




SEARCH



Peridotite xenoliths

Peridotites

Radiogenic

Xenoliths

© 2024 chempedia.info