Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical cyclization heteroatom systems

As with the other procedures for the preparation of six-membered heterocyclic systems which proceed via formation of only one ring bond there are relatively few methods which involve formation of a ring bond y to the heteroatom and which can best be classified as [6 + 0] processes rather than [4 + 2], [3 + 3], etc, processes. Of those which can be so represented, however, a number are important processes which are widely used for the synthesis of saturated, partially saturated and aromatic six-membered heterocyclic systems and their benzo derivatives. Mechanistically, the nucleophile —> electrophile approach is by far the most common, but in contrast to the reactions discussed in the previous three sections, radical cyclizations are of considerable utility here. [Pg.73]

A very large number of these systems with ring junction heteroatoms exists, and this number is constantly increasing. Only illustrative examples of the preparation of such systems can be given here. The synthetic methods for the formation of this type of heterocycle can be usefully classified as follows (i) various cyclocondensations between the corresponding heterocyclic derivatives and bifunctional units, (ii) intramolecular cyclizations of electrophilic, nucleophilic or (still rare) radical type, (iii) cycloadditions, (iv) intramolecular oxidative coupling, (v) intramolecular insertions, (vi) cyclization of open-chained predecessors, (vii) various reactions (quite often unusual) which are specific for each type of system. Examples given below illustrate all these cases. [Pg.667]

One of the main advantages of the anionic cyclizations is their regioespecificity and stereoselectivity when compared with radical or other types of reactions leading to cyclic systems. This is usually due to the formation of complexes involving the lithiated alkyl, vinyl or aryl substrate and an unsaturated, double or triple, C—C bond. In some cases, a heteroatom is involved in stabilizing the transition state for the reaction. In other cases, the stereoselectivity of the cyclization is determined by the presence of several functional groups in the substrate. [Pg.108]


See other pages where Radical cyclization heteroatom systems is mentioned: [Pg.1177]    [Pg.1177]    [Pg.143]    [Pg.279]    [Pg.10]    [Pg.120]    [Pg.61]    [Pg.10]    [Pg.144]    [Pg.172]    [Pg.260]    [Pg.168]   
See also in sourсe #XX -- [ Pg.1176 , Pg.1177 , Pg.1178 , Pg.1179 , Pg.1180 ]




SEARCH



Cyclization system

Heteroatomic radicals

Radical cyclization

© 2024 chempedia.info