Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quaternary oxides, synthesis

A number of other routes are available for the syntheses of diquaternary salts of 4,4 -bipyridines. One method that has been extensively studied involves reaction of a 1-alkylpyridinium salt with sodium amalgam (or sodium in liquid ammonia) to form the 1,1 -dialkyl-1,1, 4,4 -tetrahydro-bipyridine, which is readily oxidized to the corresponding l,l -dialkyl diquaternary salt. This reaction is analogous to the synthesis of 4,4 -bipyridine by the action of sodium on pyridine, followed by oxidation of the intermediate tetrahydrobipyridine. " The reduction may be achieved electrolytically or by reaction with zinc or magnesium. Various oxidizing agents have been used to assist the conversion to the di-quaternary Another synthesis of diquaternary salts of... [Pg.352]

These major routes to quinoxalmecarbonitriles have been covered already by primary synthesis (Chapter 1), by cyanalysis of halogenoquinoxalines (Section 3.2.5), by deoxidative cyanation of quinoxaline N-oxides (Section 4.6.2.2), by cyanolysis of nitroquinoxalines (Section 6.1.2.2), from primary quinoxalina-mines by a Sandmeyer-type reaction (Section 6.3.2.3), from quaternary ammonio-quinoxalines with cyanide ion (Section 6.3.2.4), and by dehydration of quinoxalinecarboxamides (Section 7.4.2). Those remaining preparative routes that have been used recently are illustrated in the following examples. [Pg.342]

The Hofmann elimination is useful synthetically for preparing alkenes since it gives the least substituted alkene. The reaction involves thermal elimination of a tertiary amine from a quaternary ammonium hydroxide these are often formed by alkylation of a primary amine with methyl iodide followed by reaction with silver oxide. The mechanism of the elimination is shown in Scheme 1.13 in this synthesis of 1-methyl-1-... [Pg.27]

Scheme 11). Alternatively the quaternary salts can be converted thermally into acyliron chelate complexes which can then be oxidized to azetidinones (Scheme 12). Extension of the method to the synthesis of a condensed azetidinone is illustrated in Scheme 13, but the scope of the procedure has not been evaluated. It will also be of interest to assess the utility of other cationic organometallic complexes preliminary studies have shown that molybdenum complexes behave in an analogous manner but the oxidative cyclization is inefficient (Scheme 14). [Pg.328]

Silica gel-based catalytic systems have been described as efficient promoters for a number of organic reactions.28 Illustrative examples include the oxidative cleavage of double bonds catalyzed by silica-supported KM11O4,29 reaction of epoxides with lithium halides to give /i-halohydrins performed on silica gel,30 selective deprotection of terf-butyldimethylsilyl ethers catalyzed by silica gel-supported phosphomolybdic acid (PMA),31 and synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts.32... [Pg.34]

Metal clusters in metal oxide systems have not been well-characterized or abundantly investigated up to the present time. Only isolated examples of metal-metal bonded units in oxide lattices have appeared from time to time. It will be the thesis of this presentation to show that highly unusual structures determined by strong metal-metal bonding will be found in ternary and quaternary metal oxide systems, and that opportunities abound for creative work on the synthesis, theory and structure-property relationships of such compounds. Because of the well-known correlation of d-electron population and d-orbital radial extension with metal-metal bond formation,... [Pg.263]

In this route a dihydroisoquinoline (58) is N alkylated with a highly functionalized o -bromoacetophenone (59) to give a quaternary salt (60), which is treated with base and cyclizes to a pyrroloisoquinoline (60). The pyrrole nucleus is then formylated under Vilsmeier-Haack conditions at position 5 and a proximate mesylated phenolic group is deprotected with base to yield a pen-tasubstituted pyrrole (61). Subsequent oxidative cyclization of this formylpyr-role produces the 5-lactone portion of lamellarin G trimethyl ether (36). This sequence allows for rapid and efficient analog synthesis as well as the synthesis of the natural product. [Pg.82]

Synthesis of [1,2,3]triazolo[1,5-c]pyrimidines and [1,2,4]triazolo[1,5-c]pyrimidines A novel approach to [l,2,3]triazolo[l,5-c]pyrimidines is shown in Scheme 55. Batori and Messmer - in the course of their investigations on fused azolium salts - described a synthetic pathway to l,3-disubstituted[l,2,3]triazolo[l,5-c]-pyrimidinium salts <1994JHC1041>. The cyclization was accomplished by transformation of the hydrazone 436. This compound was subjected to an oxidative ring closure by 2,4,4,6-tetrabromo-2,5-cyclohexadienone to give the bicyclic quaternary salt 437 in acceptable yield. [Pg.733]

Synthesis in liquidAl Al as a reactive solvent Several intermetallic alu-minides have been prepared from liquid aluminium very often the separation of the compounds may be achieved through the dissolution of Al which dissolves readily in several non-oxidizing acids (for instance HC1). For a review on the reactions carried out in liquid aluminium and on several compounds prepared, see Kanatzidis et al. (2005) binary compounds are listed (Re-Al, Co-Al, Ir-Al) as well as ternary phases (lanthanide and actinide-transition metal aluminides). Examples of quaternary compounds (alumino-silicides, alumino-germanides of lanthanides and transition metals) have also been described. As an example, a few preparative details of specific compounds are reported in the following. [Pg.578]

Although sodium sulphide reacts readily with haloalkanes [2] and activated aryl halides (see Chapter 2) [e.g. 3-5] in the presence of a quaternary ammonium catalyst to form symmetrical thioethers (Table 4.1), a major side reaction results in the formation of disulphides owing to the oxidation of the intermediate thiols under the basic conditions. Consequently, little use has been made of this procedure for the synthesis of thioethers [3, 6], but the corresponding reaction of the a,(0-dihaloalkanes to yield cyclic thioethers has proved to be a valuable procedure for the synthesis of thietanes [7] (Table 4.2). The ring closure with the secondary dihaloalkanes is considerably more difficult to effect than is the reaction of the primary dihaloalkanes. 1,3-Dihydrobenzo[c]thiophene (89%) is produced in the reaction of 1,2-bis(bromomethyl)benzene with sodium sulphide (Scheme 4.1) [8]. The direct... [Pg.119]


See other pages where Quaternary oxides, synthesis is mentioned: [Pg.40]    [Pg.27]    [Pg.130]    [Pg.2934]    [Pg.2933]    [Pg.296]    [Pg.305]    [Pg.306]    [Pg.1198]    [Pg.118]    [Pg.125]    [Pg.654]    [Pg.800]    [Pg.293]    [Pg.545]    [Pg.163]    [Pg.171]    [Pg.569]    [Pg.569]    [Pg.6]    [Pg.360]    [Pg.102]    [Pg.156]    [Pg.239]    [Pg.646]    [Pg.24]    [Pg.163]    [Pg.19]    [Pg.152]    [Pg.263]    [Pg.79]    [Pg.198]    [Pg.315]    [Pg.415]    [Pg.156]    [Pg.400]    [Pg.261]    [Pg.175]   
See also in sourсe #XX -- [ Pg.12 , Pg.64 ]




SEARCH



QUATERNARY OXIDANTS

Quaternary oxides

Quaternary synthesis

© 2024 chempedia.info