Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum proton transfer reaction

Figure A3.8.3 Quantum activation free energy curves calculated for the model A-H-A proton transfer reaction described 45. The frill line is for the classical limit of the proton transfer solute in isolation, while the other curves are for different fully quantized cases. The rigid curves were calculated by keeping the A-A distance fixed. An important feature here is the direct effect of the solvent activation process on both the solvated rigid and flexible solute curves. Another feature is the effect of a fluctuating A-A distance which both lowers the activation free energy and reduces the influence of the solvent. The latter feature enliances the rate by a factor of 20 over the rigid case. Figure A3.8.3 Quantum activation free energy curves calculated for the model A-H-A proton transfer reaction described 45. The frill line is for the classical limit of the proton transfer solute in isolation, while the other curves are for different fully quantized cases. The rigid curves were calculated by keeping the A-A distance fixed. An important feature here is the direct effect of the solvent activation process on both the solvated rigid and flexible solute curves. Another feature is the effect of a fluctuating A-A distance which both lowers the activation free energy and reduces the influence of the solvent. The latter feature enliances the rate by a factor of 20 over the rigid case.
Drukker, K., Hammes-Schiffer, S. An analytical derivation of MC-SCF vibrational wave functions for the quantum dynamical simulation of multiple proton transfer reactions Initial application to protonated water chains. J. Chem. Phys. 107 (1997) 363-374. [Pg.33]

Hammes-Schiffer Multiconflgurational molecular dynamics with quantum transitions Multiple proton transfer reactions. J. Chem. Phys. 105 (1996) 2236-2246. [Pg.34]

Many computational studies in heterocyclic chemistry deal with proton transfer reactions between different tautomeric structures. Activation energies of these reactions obtained from quantum chemical calculations need further corrections, since tunneling effects may lower the effective barriers considerably. These effects can either be estimated by simple models or computed more precisely via the determination of the transmission coefficients within the framework of variational transition state calculations [92CPC235, 93JA2408]. [Pg.7]

Unlike the simplest outer-sphere electron transfer reactions where the electrons are the only quantum subsystem and only two types of transitions are possible (adiabatic and nonadiabatic ones), the situation for proton transfer reactions is more complicated. Three types of transitions may be considered here5 ... [Pg.127]

The effects of transfer of atoms by tunneling may play an essential role in a number of phenomena involving the transfer of atoms and atomic groups in the condensed phase. One may expect that these effects may exist not only in the proton transfer reactions considered above but also in such processes as the diffusion of hydrogen atoms and other light ions (e.g., Li+) in liquids, tunnel inversion and isomerization in some molecules, quantum diffusion of defects and light atoms in the electrode at cathodic incorporation of the ions, ion transfer across the liquid/solid interface, and low-temperature chemical reactions. [Pg.142]

The reaction of ammonia and hydrogen chloride in the gas phase has been the subject of several studies in the last 30 years [56-65], The interest in this system is mainly that it represents a simple model for proton transfer reactions, which are important for many chemical and biological processes. Moreover, in the field of atmospheric sciences, this reaction has been considered as a prototype system for investigation of particle formation from volatile species [66,67], Finally, it is the reaction chosen as a benchmark on the ability, of quantum chemical computer simulations, to realistically simulate a chemical process, its reaction path and, eventually, its kinetics. [Pg.192]

Lobaugh, J. and Voth, G. A. Calculation of quantum activation free energies for proton transfer reactions in polarsolvents, Chem. Phys. Lett., 198(1992), 311-315... [Pg.351]

Quantum-mechanical tunnelling has been recognized as a possible contributor to the rate of a chemical reaction for many years. For instance, the theory of tunnelling for proton transfer reactions was developed by Bell (1959) in his famous book The Proton in Chemistry. Later, Bell (1980a) published a more thorough treatment of tunnelling in his book The Tunnel Effect in Chemistry. [Pg.211]

Quantum Mechanical Dynamical Effects for an Enzyme Catalyzed Proton Transfer Reaction... [Pg.380]

We have examined the proton transfer reaction AH-B A -H+B in liquid methyl chloride, where the AH-B complex corresponds to phenol-amine. The intermolecular and the complex-solvent potentials have a Lennard-Jones and a Coulomb component as described in detail in the original papers. There have been other quantum studies of this system. Azzouz and Borgis performed two calculations one based on centroid theory and another on the Landau-Zener theory. The two methods gave similar results. Hammes-Schiffer and Tully used a mixed quantum-classical method and predicted a rate that is one order of magnitude larger and a kinetic isotope effect that is one order of magnitude smaller than the Azzouz-Borgis results. [Pg.84]

We consider the same reaction model used in previous studies as a simple model for a proton transfer reaction. [31,57,79] The subsystem consists of a two-level quantum system bilinearly coupled to a quartic oscillator and the bath consists of v — 1 = 300 harmonic oscillators bilinearly coupled to the non-linear oscillator but not directly to the two-level quantum system. In the subsystem representation, the partially Wigner transformed Hamiltonian for this system is,... [Pg.405]


See other pages where Quantum proton transfer reaction is mentioned: [Pg.894]    [Pg.895]    [Pg.14]    [Pg.175]    [Pg.203]    [Pg.576]    [Pg.250]    [Pg.105]    [Pg.390]    [Pg.46]    [Pg.191]    [Pg.34]    [Pg.238]    [Pg.87]    [Pg.310]    [Pg.79]    [Pg.190]    [Pg.594]    [Pg.68]    [Pg.99]    [Pg.84]    [Pg.158]   
See also in sourсe #XX -- [ Pg.236 , Pg.237 ]




SEARCH



Proton reactions

Proton transfer reactions

Proton-transfer reactions semiclassical/quantum model

Protonation Reactions

© 2024 chempedia.info