Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum mechanics study

Stumpf M, Dobbyn A J, Keller H-M, Hase W L and Schinke R 1995 Quantum mechanical study of the unimolecular dissociation of HO2 a rigorous test of RRKM theory J. Chem. Phys. 102 5867-70... [Pg.1043]

Pisani C 1993 Embedded-cluster techniques for the quantum-mechanical study of surface reactivity J. Mol. Catal. 82 229... [Pg.2235]

Baer M, Niedner-Shcattenburg G and Toennies J P 1989 A 3-dimensional quantum mechanical study of vibrationally resolved charged transfer processes in H at = 20 eV J. Chem. Phys. 91 4169... [Pg.2330]

By using this approach, it is possible to calculate vibrational state-selected cross-sections from minimal END trajectories obtained with a classical description of the nuclei. We have studied vibrationally excited H2(v) molecules produced in collisions with 30-eV protons [42,43]. The relevant experiments were performed by Toennies et al. [46] with comparisons to theoretical studies using the trajectory surface hopping model [11,47] fTSHM). This system has also stimulated a quantum mechanical study [48] using diatomics-in-molecule (DIM) surfaces [49] and invoicing the infinite-onler sudden approximation (lOSA). [Pg.241]

The full quantum mechanical study of nuclear dynamics in molecules has received considerable attention in recent years. An important example of such developments is the work carried out on the prototypical systems H3 [1-5] and its isotopic variant HD2 [5-8], Li3 [9-12], Na3 [13,14], and HO2 [15-18], In particular, for the alkali metal trimers, the possibility of a conical intersection between the two lowest doublet potential energy surfaces introduces a complication that makes their theoretical study fairly challenging. Thus, alkali metal trimers have recently emerged as ideal systems to study molecular vibronic dynamics, especially the so-called geometric phase (GP) effect [13,19,20] (often referred to as the molecular Aharonov-Bohm effect [19] or Berry s phase effect [21]) for further discussion on this topic see [22-25], and references cited therein. The same features also turn out to be present in the case of HO2, and their exact treatment assumes even further complexity [18],... [Pg.552]

The overall form of each of these equations is fairly simple, ie, energy = a constant times a displacement. In most cases the focus is on differences in energy, because these are the quantities which help discriminate reactivity among similar stmctures. The computational requirement for molecular mechanics calculations grows as where n is the number of atoms, not the number of electrons or basis functions. Immediately it can be seen that these calculations will be much faster than an equivalent quantum mechanical study. The size of the systems which can be studied can also substantially ecHpse those studied by quantum mechanics. [Pg.164]

K. Fukui (Kyoto) and R. Hoffmann (Cornell) quantum mechanical studies of chemical reactivity. [Pg.1299]

The traditional place to begin a quantum-mechanical study of molecules is with the hydrogen molecule ion H2+. Apart from being a prototype molecule, it reminds us that molecules consist of nuclei and electrons. We often have to be aware of the nuclear motion in order to understand the electronic ones. The two are linked. [Pg.72]

Potential energy surfaces are also central to our quantum-mechanical studies, and we are going to meet them again and again in subsequent chapters. Let s start then with Figure 3.1, which shows H2+. We are not going to be concerned with the overall translational motion of the molecule. For simphcity, I have drawn a local axis system with the centre of mass as the origin. By convention, we label the intemuclear axis the z-axis. [Pg.72]

Ohm, Y., "Quantum Mechanical Studies of Eletronic Spectra of Atomic and Jt-Electron Systems" Acta Universitatis Upsaliensis 1966, 68. [Pg.17]

Improta R, Barone V (2004) Absorption and fluorescence spectra of uracil in the gas phase and in aqueous solution a TDDFT quantum mechanical study. J Am Chem Soc 126 14320... [Pg.336]

Ludwig V, Coutinho K, Canuto S (2007) A Monte Carlo-quantum mechanics study of the lowest n — n and it — it states of uracil in water. Phys Chem Chem Phys 9 4907—4912... [Pg.336]


See other pages where Quantum mechanics study is mentioned: [Pg.592]    [Pg.146]    [Pg.161]    [Pg.1]    [Pg.285]    [Pg.287]    [Pg.289]    [Pg.291]    [Pg.293]    [Pg.295]    [Pg.297]    [Pg.299]    [Pg.301]    [Pg.303]    [Pg.305]    [Pg.307]    [Pg.309]    [Pg.311]    [Pg.313]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.321]    [Pg.323]    [Pg.325]    [Pg.327]    [Pg.329]    [Pg.331]    [Pg.333]    [Pg.335]    [Pg.337]    [Pg.340]   
See also in sourсe #XX -- [ Pg.72 ]




SEARCH



Mechanical studies

Mechanism study

Quantum mechanical studies

Quantum studies

© 2024 chempedia.info