Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyruvate/phosphoenolpyruvate cycle

Today the metabolic network of the central metabolism of C. glutamicum involving glycolysis, pentose phosphate pathway (PPP), TCA cycle as well as anaplerotic and gluconeogenetic reactions is well known (Fig. 1). Different enzymes are involved in the interconversion of carbon between TCA cycle (malate/oxaloacetate) and glycolysis (pyruvate/phosphoenolpyruvate). For anaplerotic replenishment of the TCA cycle, C. glutamicum exhibits pyruvate carboxylase [20] and phosphoenol-pyruvate (PEP) carboxylase as carboxylating enzymes. Malic enzyme [21] and PEP carboxykinase [22,23] catalyze decarboxylation reactions from the TCA cycle... [Pg.23]

Metahohc fuels may be defined as complex carbon molecules that can be exploited for the energy released upon breakage of their carbon-carbon bonds. Fatty acids and hexoses, principally glucose, represent the two major classes of such complex carbon molecules that are used for fuel by eukaryotes. Typically, glucose is first metabolized anaerobically (glycolysis) to three-carbon molecules (pyruvate, phosphoenolpyruvate) which then provide the precursors of the tricarboxylic acid or Krebs cycle, ie oxaloacetate and acetyl-CoA. The cycling of such intermediates via the Krebs cyele then efifeets the con-... [Pg.241]

Step 2 of Figure 29.13 Decarboxylation and Phosphorylation Decarboxylation of oxaloacetate, a jB-keto acid, occurs by the typical retro-aldol mechanism like that in step 3 in the citric acid cycle (Figure 29.12), and phosphorylation of the resultant pyruvate enolate ion by GTP occurs concurrently to give phosphoenol-pyruvate. The reaction is catalyzed by phosphoenolpyruvate carboxykinase. [Pg.1162]

The oxidative decarboxylation reaction above is part of the TCA cycle and leads to the formation of oxaloacetate, which maybe used to synthesize citrate (with acetyl-CoA) or may be used as a substrate by phosphoenol pyruvate carboxykinase, PEPCK. It should be noted that the phosphoenolpyruvate generated by PEPCK reaction shown above is... [Pg.269]

Figure 6.1 Pathways involved in glucose oxidation by plant cells (a) glycolysis, (b) Krebs cycle, (c) mitochondrial cytochrome chain. Under anoxic conditions. Reactions 1, 2 and 3 of glycolysis are catalysed by lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase, respectively. ATP and ADP, adenosine tri- and diphosphate NAD and NADHa, oxidized and reduced forms of nicotinamide adenine dinucleotide PGA, phosphoglyceraldehyde PEP, phosphoenolpyruvate Acetyl-CoA, acetyl coenzyme A FP, flavoprotein cyt, cytochrome e, electron. (Modified from Fitter and Hay, 2002). Reprinted with permission from Elsevier... Figure 6.1 Pathways involved in glucose oxidation by plant cells (a) glycolysis, (b) Krebs cycle, (c) mitochondrial cytochrome chain. Under anoxic conditions. Reactions 1, 2 and 3 of glycolysis are catalysed by lactate dehydrogenase, pyruvate decarboxylase and alcohol dehydrogenase, respectively. ATP and ADP, adenosine tri- and diphosphate NAD and NADHa, oxidized and reduced forms of nicotinamide adenine dinucleotide PGA, phosphoglyceraldehyde PEP, phosphoenolpyruvate Acetyl-CoA, acetyl coenzyme A FP, flavoprotein cyt, cytochrome e, electron. (Modified from Fitter and Hay, 2002). Reprinted with permission from Elsevier...
The pyrnvate/phosphoenolpyrnvate cycle, which involves the enzymes pyrnvate kinase, pyruvate carboxylase and phosphoenolpyruvate carboxykinase. [Pg.122]

Table 16-2 shows the most common anaplerotic reactions, all of which, in various tissues and organisms, convert either pyruvate or phosphoenolpyruvate to ox-aloacetate or malate. The most important anaplerotic reaction in mammalian liver and kidney is the reversible carboxylation of pyruvate by C02 to form oxaloacetate, catalyzed by pyruvate carboxylase. When the citric acid cycle is deficient in oxaloacetate or any other intermediates, pyruvate is carboxylated to produce more oxaloacetate. The enzymatic addition of a carboxyl group to pyruvate requires energy, which is supplied by ATP—the free energy required to attach a carboxyl group to pyruvate is about equal to the free energy available from ATP. [Pg.617]

The other anaplerotic reactions shown in Table 16-2 are also regulated to keep the level of intermediates high enough to support the activity of the citric acid cycle. Phosphoenolpyruvate (PEP) carboxylase, for example, is activated by the glycolytic intermediate fructose 1,6-bisphosphate, which accumulates when the citric acid cycle operates too slowly to process the pyruvate generated by glycolysis. [Pg.617]

The following sequence will do the task a-ketoglutarate, the tricarboxylic acid cycle to oxaloacetate, to phosphoenolpyruvate, to pyruvate, to acetyl-CoA, into the tricarboxylic acid cycle. [Pg.893]

This cycle resembles the 3-hydroxypropionate/4-hydroxybutyrate cycle, but with pyruvate ferredoxin oxidoreductase (pyruvate synthase) and phosphoenolpyruvate (PEP) carboxylase as the carboxylating enzymes (Figure 3.6). [Pg.44]

In nature, most aldolases are rooted in the sugar metabolic cycle and accept highly functionalized substrates for the aldol reaction. Nevertheless, the scope of enzymatic aldol reactions is limited, since aldolases strictly distinguish between the acceptor and the donor, yielding almost exclusively one product, and is furthermore restricted to only a few different possible natural donors. According to the donor molecules, aldolases are grouped in dihydroxyacetone phosphate-, phosphoenolpyruvate- or pyruvate-, acetaldehyde-, and glycine-dependent aldolases [41]. [Pg.29]

After PEP carboxylase makes the oxaloacetate, it is transported to the bundle sheath cells. First, NADPH reduces it to malate, and it is then transported to the bundle sheath cells. In the bundle sheath cells, malic enzyme cleaves the malate to pyruvate and C02 for Rubisco. This generates NADPH as well, so the C4 cycle consumes no reducing equivalents. Pyruvate is transported from the bundle sheath back to the mesophyll cells where it is rephosphorylated to phosphoenolpyruvate, expending the equivalent of two ATP high-energy phosphates. ... [Pg.60]

The enzymes are, respectively (1) mitochondrial malate dehydrogenase (2) cytoplasmic malate dehydrogenase (3) phosphoenolpyruvate carboxykinase (4) pyruvate kinase and pyruvate dehydrogenase. The acetyl-CoA could then condense with oxaloacetate (produced from a second molecule of aspartate) to yield citrate. Aspartate could, therefore, continue to supply acctyl-CoA, which would continue to fuel the citric acid cycle. [Pg.360]

How many molecules of ATP are produced per molecule of (a) pyruvate, (b) NADH, (c) glucose, and (d) phosphoenolpyruvate, by a cell homogenate in which glycolysis, the citric acid cycle, and oxidative phosphorylation are all completely active ... [Pg.418]

The Q pathway for the transport of CO2 starts in a mesophyll cell with the condensation of CO2 and phosphoenolpyruvate to form oxaloacetate, in a reaction catalyzed by phosphoenolpyruvate carboxylase. In some species, oxaloacetate is converted into malate by an NADP+-linked malate dehydrogenase. Malate goes into the bundle-sheath cell and is oxidatively decarboxylated within the chloroplasts by an NADP+-linked malate dehydrogenase. The released CO2 enters the Calvin cycle in the usual way by condensing with ribulose 1,5-bisphosphate. Pyruvate formed in this decarboxylation reaction returns to the mesophyll cell. Finally, phosphoenolpyruvate is formed from pyruvate by pyruvate-Pi dikinase. [Pg.839]

A third fate of pyruvate is its carboxylation to oxaloacetate inside mitochondria, the first step in gluconeogenesis. This reaction and the subsequent conversion of oxaloacetate into phosphoenolpyruvate bypass an irreversible step of glycolysis and hence enable glucose to be synthesized from pyruvate. The carboxylation of pyruvate is also important for replenishing intermediates of the citric acid cycle. Acetyl CoA activates pyruvate carboxylase, enhancing the synthesis of oxaloacetate, when the citric acid cycle is slowed by a paucity of this intermediate. [Pg.1254]


See other pages where Pyruvate/phosphoenolpyruvate cycle is mentioned: [Pg.10]    [Pg.10]    [Pg.523]    [Pg.637]    [Pg.544]    [Pg.371]    [Pg.169]    [Pg.558]    [Pg.781]    [Pg.905]    [Pg.104]    [Pg.523]    [Pg.375]    [Pg.37]    [Pg.81]    [Pg.81]    [Pg.152]    [Pg.218]    [Pg.218]    [Pg.219]    [Pg.81]    [Pg.678]    [Pg.966]    [Pg.597]    [Pg.599]    [Pg.55]    [Pg.232]    [Pg.463]    [Pg.466]    [Pg.576]   
See also in sourсe #XX -- [ Pg.115 , Pg.122 ]




SEARCH



Phosphoenolpyruvate

Pyruvate cycl

© 2024 chempedia.info